데이터의 종류

변수: var__(variable)

상수:const__(constant)

값: data

할당연산자: assignment vector: c(1,2,3)

var.a <- 1
var.b <- 2
var.a + var.b

함수의 종류

c()수자 타입의 벡털를 생성
vec.a <- c(1,2,5,7,8)#집합 
vec.a
vec.b <- c(1:5)
vec.b
vec.c <- seq(1,10,by=2)
vec.c
vec.b+vec.c
c()문자 타입의 벡터를 생성
var.a <-c("hello","world","is","good")
var.a

scalar

스칼라(영어: scalar 스케일러[*])란 크기만 있고 방향을 가지지 않는 양을 말한다 위키백과

vector

벡터(vector)는 방향과 크기의 의미를 모두 포함하는 표현 도구

dataframe (2개이상 벡터 합치기 )

데이터의 집합체 행(row/case, 대상하나의 정보(사람인수 많아야 한다 ) )과 열(column:var+data.즉 한개의 벡터이다 )로 구성 된 표


vec.name <- c("김지훈 ", "이유진 ", "박동현 ","김민지 ")
#vec.name <- c("a ", "b ", "c ","d ")
vec.name
vec.english <- c(90 , 80 , 60 , 70)
vec.english
vec.math <- c(50,60,100,20)
vec.math
df.exam <- cblind.
df_score <- data.frame(vec.name,vec.english,vec.math)
df_score
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KIyMj642w7J207YSw7J2YIOyiheulmA0KDQrrs4DsiJg6IHZhcl9fKHZhcmlhYmxlKQ0KDQrsg4HsiJg6Y29uc3RfXyhjb25zdGFudCkNCg0K6rCSOiBkYXRhDQoNCu2VoOuLueyXsOyCsOyekDogYXNzaWdubWVudCANCnZlY3RvcjogYygxLDIsMykNCmBgYHtyfQ0KdmFyLmEgPC0gMQ0KdmFyLmIgPC0gMg0KdmFyLmEgKyB2YXIuYg0KDQpgYGANCg0KIyMj7ZWo7IiY7J2YIOyiheulmCANCiMjIyMjYygp7IiY7J6QIO2DgOyeheydmCDrsqHthLjrpbwgIOyDneyEsSANCmBgYHtyfQ0KdmVjLmEgPC0gYygxLDIsNSw3LDgpI+ynke2VqSANCnZlYy5hDQp2ZWMuYiA8LSBjKDE6NSkNCnZlYy5iDQp2ZWMuYyA8LSBzZXEoMSwxMCxieT0yKQ0KdmVjLmMNCnZlYy5iK3ZlYy5jDQpgYGANCiMjIyMjYygp66y47J6QIO2DgOyeheydmCDrsqHthLDrpbwgIOyDneyEsSANCmBgYHtyfQ0KdmFyLmEgPC1jKCJoZWxsbyIsIndvcmxkIiwiaXMiLCJnb29kIikNCnZhci5hDQpgYGANCiMjIyNzY2FsYXINCj7siqTsubzrnbwo7JiB7Ja0OiBzY2FsYXIg7Iqk7LyA7J2865+sWypdKeuegCAg7YGs6riw66eMIOyeiOqzoCDrsKntlqXsnYQg6rCA7KeA7KeAIOyViuuKlCDslpHsnYQg66eQ7ZWc64ukDQpb7JyE7YKk67Cx6rO8XShodHRwczovL2tvLndpa2lwZWRpYS5vcmcvd2lraS8lRUMlOEElQTQlRUMlQjklQkMlRUIlOUQlQkNfKCVFQyU4OCU5OCVFRCU5NSU5OSkpDQoNCiMjIyN2ZWN0b3INCj7rsqHthLAodmVjdG9yKeuKlCDrsKntlqXqs7wg7YGs6riw7J2YIOydmOuvuOulvCDrqqjrkZAg7Y+s7ZWo7ZWY64qUIO2RnO2YhCDrj4TqtawNCg0KIyMjI2RhdGFmcmFtZSAoMuqwnOydtOyDgSDrsqHthLAgIO2Vqey5mOq4sCApDQo+642w7J207YSw7J2YIOynke2VqeyytA0KPu2WiShyb3cvY2FzZSwg64yA7IOB7ZWY64KY7J2YIOygleuztCjsgqzrnozsnbjsiJgg66eO7JWE7JW8IO2VnOuLpCApICnqs7wg7Je0KGNvbHVtbjp2YXIrZGF0YS7spokg7ZWc6rCc7J2YIOuyoe2EsOydtOuLpCAp66GcIOq1rOyEsSDrkJwg7ZGcDQoNCmBgYHtyfQ0KDQp2ZWMubmFtZSA8LSBjKCLquYDsp4Dtm4ggIiwgIuydtOycoOynhCAiLCAi67CV64+Z7ZiEICIsIuq5gOuvvOyngCAiKQ0KI3ZlYy5uYW1lIDwtIGMoImEgIiwgImIgIiwgImMgIiwiZCAiKQ0KdmVjLm5hbWUNCnZlYy5lbmdsaXNoIDwtIGMoOTAgLCA4MCAsIDYwICwgNzApDQp2ZWMuZW5nbGlzaA0KdmVjLm1hdGggPC0gYyg1MCw2MCwxMDAsMjApDQp2ZWMubWF0aA0KZGYuZXhhbSA8LSBjYmxpbmQuDQpkZl9zY29yZSA8LSBkYXRhLmZyYW1lKHZlYy5uYW1lLHZlYy5lbmdsaXNoLHZlYy5tYXRoKQ0KZGZfc2NvcmUNCg0KDQpgYGANCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQo=