데이터의 종류

변수 : var__
상수 : const__
값 : data
단축기alt+ -로 <-생성

var.a <- 1
var.b <- 2
var.a + var.b
[1] 3

함수의 종류

c() 숫자타입의 변수를 생성

단축기ctrl+alt+I
단축기ctrl+shift+enter로 결과값 보이게 할 수 있음.

Vec.a <- c(1,2,5,7,8)
Vec.b <- c(1:5)
Vec.c <- seq(1,10, by=2)
Vec.b+Vec.c
[1]  2  5  8 11 14
c() 문자타입의 벡터를 생성
var.a<-c("Hello", "world", "is", "good ! !")
var.a
[1] "Hello"    "world"    "is"       "good ! !"

Scalar

스칼라(영어: scalar 스케일러[*])란 크기만 있고 방향을 가지지 않는 양을 말한다.

위키백과

Vector

벡터(vector)는 방향과 크기의 의미를 모두 포함하는 표현 도구이다.

위키백과

Dataframe

row(case, 대상하나의 정보)과 column(var+data)로 구성된 표

vec.name <- c("A", "B", "C", "D")
vec.name
[1] "A" "B" "C" "D"
vec.eng<-c(90, 80, 60, 70)
vec.eng
[1] 90 80 60 70
vec.math<-c(50, 60, 100, 20)
vec.math
[1]  50  60 100  20
vec.class<-c(1,1,2,2)
df.score <- data.frame(vec.name, vec.eng, vec.math)
df.score <- data.frame(vec.name, vec.eng, vec.math, vec.class)
df.score
  vec.name vec.eng vec.math vec.class
1        A      90       50         1
2        B      80       60         1
3        C      60      100         2
4        D      70       20         2
id <- c(1,2,3,4,5,6)
class <- c(1,1,1,1,2,2)
math <- c(50,60,45,30,25,50)
english <- c(98,97,86,98,80,89)
science <- c(50,60,78,58,65,98)
df.score1 <- data.frame(id,class,math,english,science)
df.score1
  id class math english science
1  1     1   50      98      50
2  2     1   60      97      60
3  3     1   45      86      78
4  4     1   30      98      58
5  5     2   25      80      65
6  6     2   50      89      98
데이터를 파악할 때 사용하는 함수들
id1<-c(1:10)
class1<-c(1,1,1,1,1,2,2,2,2,2)
match1<-c(50,60,30,43,22,30,30,30,90,100)
english1<-c(30,20,20,22,11,22,22,33,33,33)
science1<-c(20,20,33,33,3,33,22,11,11,22)
df.score2<-data.frame(id1,class1,match1,english1,science1)
df.score2
   id1 class1 match1 english1 science1
1    1      1     50       30       20
2    2      1     60       20       20
3    3      1     30       20       33
4    4      1     43       22       33
5    5      1     22       11        3
6    6      2     30       22       33
7    7      2     30       22       22
8    8      2     30       33       11
9    9      2     90       33       11
10  10      2    100       33       22
n번째 row까지만 보여주기 head(df,n)
head(df.score2, 8)
  id1 class1 match1 english1 science1
1   1      1     50       30       20
2   2      1     60       20       20
3   3      1     30       20       33
4   4      1     43       22       33
5   5      1     22       11        3
6   6      2     30       22       33
7   7      2     30       22       22
8   8      2     30       33       11
n번째 row까지만 보여주기 tail(df,n)
tail(df.score2,7)
   id1 class1 match1 english1 science1
4    4      1     43       22       33
5    5      1     22       11        3
6    6      2     30       22       33
7    7      2     30       22       22
8    8      2     30       33       11
9    9      2     90       33       11
10  10      2    100       33       22
뷰어창에서 df확인 view(df)에서 V는 대분자
View(df.score2)
데이터가 몇 행, 몇 열로 구성되어있는지 알아보기는 dim함수(row,column)
dim(df.score)
[1] 4 3
str()는 데이터가 들어 있는 변수들의 속성을 보여줌(상세보고서의 느낌)
str(df.score2)
'data.frame':   10 obs. of  5 variables:
 $ id1     : int  1 2 3 4 5 6 7 8 9 10
 $ class1  : num  1 1 1 1 1 2 2 2 2 2
 $ match1  : num  50 60 30 43 22 30 30 30 90 100
 $ english1: num  30 20 20 22 11 22 22 33 33 33
 $ science1: num  20 20 33 33 3 33 22 11 11 22
summary()요약
summary(df.score2)
      id1            class1        match1         english1        science1    
 Min.   : 1.00   Min.   :1.0   Min.   : 22.0   Min.   :11.00   Min.   : 3.00  
 1st Qu.: 3.25   1st Qu.:1.0   1st Qu.: 30.0   1st Qu.:20.50   1st Qu.:13.25  
 Median : 5.50   Median :1.5   Median : 36.5   Median :22.00   Median :21.00  
 Mean   : 5.50   Mean   :1.5   Mean   : 48.5   Mean   :24.60   Mean   :20.80  
 3rd Qu.: 7.75   3rd Qu.:2.0   3rd Qu.: 57.5   3rd Qu.:32.25   3rd Qu.:30.25  
 Max.   :10.00   Max.   :2.0   Max.   :100.0   Max.   :33.00   Max.   :33.00  
변수명 바꾸기

ctrl+shift+M 파이프라인 생성(%>%)

df.score
library(dplyr)
df.score %>%
  data.table::setnames(
    old = "vec.name",
    new = "이름"
  )
df.score
파생변수 만들기
히스토그램
hist(df.score2$mean)

hist(df.score2$total)

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KIyMjIOuNsOydtO2EsOydmCDsooXrpZgNCuuzgOyImCA6IHZhcl9fICANCuyDgeyImCA6IGNvbnN0X18gICAgICANCuqwkiA6IGRhdGEgIA0K64uo7LaV6riwYWx0KyAt66GcIDwt7IOd7ISxDQoNCmBgYHtyfQ0KdmFyLmEgPC0gMQ0KdmFyLmIgPC0gMg0KdmFyLmEgKyB2YXIuYg0KYGBgDQoNCiMjIyDtlajsiJjsnZgg7KKF66WYDQojIyMjIyBjKCkg7Iir7J6Q7YOA7J6F7J2YIOuzgOyImOulvCDsg53shLENCuuLqOy2leq4sGN0cmwrYWx0K0kgICANCuuLqOy2leq4sGN0cmwrc2hpZnQrZW50ZXLroZwg6rKw6rO86rCSIOuztOydtOqyjCDtlaAg7IiYIOyeiOydjC4NCg0KYGBge3J9DQpWZWMuYSA8LSBjKDEsMiw1LDcsOCkNClZlYy5iIDwtIGMoMTo1KQ0KVmVjLmMgPC0gc2VxKDEsMTAsIGJ5PTIpDQpWZWMuYitWZWMuYw0KYGBgDQoNCiMjIyMjIGMoKSDrrLjsnpDtg4DsnoXsnZgg67Kh7YSw66W8IOyDneyEsQ0KDQpgYGB7cn0NCnZhci5hPC1jKCJIZWxsbyIsICJ3b3JsZCIsICJpcyIsICJnb29kICEgISIpDQp2YXIuYQ0KYGBgDQoNCiMjIyMgU2NhbGFyIA0KPuyKpOy5vOudvCjsmIHslrQ6IHNjYWxhciDsiqTsvIDsnbzrn6xbKl0p656AIO2BrOq4sOunjCDsnojqs6Ag67Cp7Zal7J2EIOqwgOyngOyngCDslYrripQg7JaR7J2EIOunkO2VnOuLpC4NCg0KW+ychO2CpOuwseqzvF0oaHR0cHM6Ly9rby53aWtpcGVkaWEub3JnL3dpa2kv7Iqk7Lm86528XyjsiJjtlZkpKQ0KDQojIyMjIFZlY3Rvcg0KPuuyoe2EsCh2ZWN0b3Ip64qUIOuwqe2WpeqzvCDtgazquLDsnZgg7J2Y66+466W8IOuqqOuRkCDtj6ztlajtlZjripQg7ZGc7ZiEIOuPhOq1rOydtOuLpC4NCg0KW+ychO2CpOuwseqzvF0oaHR0cHM6Ly9rby53aWtpcGVkaWEub3JnL3dpa2kv67Kh7YSwXyjrrLzrpqwpKQ0KDQojIyMjIERhdGFmcmFtZQ0Kcm93KGNhc2UsIOuMgOyDge2VmOuCmOydmCDsoJXrs7Qp6rO8IGNvbHVtbih2YXIrZGF0YSnroZwg6rWs7ISx65CcIO2RnA0KDQpgYGB7cn0NCnZlYy5uYW1lIDwtIGMoIkEiLCAiQiIsICJDIiwgIkQiKQ0KdmVjLm5hbWUNCnZlYy5lbmc8LWMoOTAsIDgwLCA2MCwgNzApDQp2ZWMuZW5nDQp2ZWMubWF0aDwtYyg1MCwgNjAsIDEwMCwgMjApDQp2ZWMubWF0aA0KdmVjLmNsYXNzPC1jKDEsMSwyLDIpDQpkZi5zY29yZSA8LSBkYXRhLmZyYW1lKHZlYy5uYW1lLCB2ZWMuZW5nLCB2ZWMubWF0aCkNCmRmLnNjb3JlIDwtIGRhdGEuZnJhbWUodmVjLm5hbWUsIHZlYy5lbmcsIHZlYy5tYXRoLCB2ZWMuY2xhc3MpDQpkZi5zY29yZQ0KYGBgDQoNCg0KYGBge3J9DQppZCA8LSBjKDEsMiwzLDQsNSw2KQ0KY2xhc3MgPC0gYygxLDEsMSwxLDIsMikNCm1hdGggPC0gYyg1MCw2MCw0NSwzMCwyNSw1MCkNCmVuZ2xpc2ggPC0gYyg5OCw5Nyw4Niw5OCw4MCw4OSkNCnNjaWVuY2UgPC0gYyg1MCw2MCw3OCw1OCw2NSw5OCkNCmRmLnNjb3JlMSA8LSBkYXRhLmZyYW1lKGlkLGNsYXNzLG1hdGgsZW5nbGlzaCxzY2llbmNlKQ0KZGYuc2NvcmUxDQpgYGANCg0KIyMjIyMg642w7J207YSw66W8IO2MjOyVhe2VoCDrlYwg7IKs7Jqp7ZWY64qUIO2VqOyImOuTpA0KDQpgYGB7cn0NCmlkMTwtYygxOjEwKQ0KY2xhc3MxPC1jKDEsMSwxLDEsMSwyLDIsMiwyLDIpDQptYXRjaDE8LWMoNTAsNjAsMzAsNDMsMjIsMzAsMzAsMzAsOTAsMTAwKQ0KZW5nbGlzaDE8LWMoMzAsMjAsMjAsMjIsMTEsMjIsMjIsMzMsMzMsMzMpDQpzY2llbmNlMTwtYygyMCwyMCwzMywzMywzLDMzLDIyLDExLDExLDIyKQ0KZGYuc2NvcmUyPC1kYXRhLmZyYW1lKGlkMSxjbGFzczEsbWF0Y2gxLGVuZ2xpc2gxLHNjaWVuY2UxKQ0KZGYuc2NvcmUyDQpgYGANCg0KIyMjIyNu67KI7Ke4IHJvd+q5jOyngOunjCDrs7Tsl6zso7zquLAgaGVhZChkZixuKQ0KDQpgYGB7cn0NCmhlYWQoZGYuc2NvcmUyLCA4KQ0KYGBgDQoNCiMjIyMjbuuyiOynuCByb3fquYzsp4Drp4wg67O07Jes7KO86riwIHRhaWwoZGYsbikNCmBgYHtyfQ0KdGFpbChkZi5zY29yZTIsNykNCmBgYA0KDQojIyMjI+u3sOyWtOywveyXkOyEnCBkZu2ZleyduCB2aWV3KGRmKeyXkOyEnCBW64qUIOuMgOu2hOyekA0KYGBge3J9DQpWaWV3KGRmLnNjb3JlMikNCmBgYA0KDQojIyMjI+uNsOydtO2EsOqwgCDrqocg7ZaJLCDrqocg7Je066GcIOq1rOyEseuQmOyWtOyeiOuKlOyngCDslYzslYTrs7TquLDripQgZGlt7ZWo7IiYKHJvdyxjb2x1bW4pDQoNCmBgYHtyfQ0KZGltKGRmLnNjb3JlKQ0KYGBgDQoNCiMjIyMjc3RyKCnripQg642w7J207YSw6rCAIOuTpOyWtCDsnojripQg67OA7IiY65Ok7J2YIOyGjeyEseydhCDrs7Tsl6zspIwo7IOB7IS467O06rOg7ISc7J2YIOuKkOuCjCkNCg0KYGBge3J9DQpzdHIoZGYuc2NvcmUyKQ0KYGBgDQoNCiMjIyMjc3VtbWFyeSgp7JqU7JW9DQpgYGB7cn0NCnN1bW1hcnkoZGYuc2NvcmUyKQ0KYGBgDQoNCiMjIyMjIOuzgOyImOuqhSDrsJTqvrjquLAgICAgIA0KY3RybCtzaGlmdCtNIO2MjOydtO2UhOudvOyduCDsg53shLEoJT4lKQ0KYGBge3J9DQpkZi5zY29yZQ0KbGlicmFyeShkcGx5cikNCmRmLnNjb3JlICU+JQ0KICBkYXRhLnRhYmxlOjpzZXRuYW1lcygNCiAgICBvbGQgPSAidmVjLm5hbWUiLA0KICAgIG5ldyA9ICLsnbTrpoQiDQogICkNCmRmLnNjb3JlDQpgYGANCg0KDQojIyMjI+2MjOyDneuzgOyImCDrp4zrk6TquLANCg0KDQojIyMjIyPtnojsiqTthqDqt7jrnqgNCmBgYHtyfQ0KaGlzdChkZi5zY29yZTIkbWVhbikNCmhpc3QoZGYuc2NvcmUyJHRvdGFsKQ0KYGBgDQoNCg==