변수 : var__
상수 : const__
값 : data
단축기alt+ -로 <-생성
var.a <- 1
var.b <- 2
var.a + var.b
[1] 3
단축기ctrl+alt+I
단축기ctrl+shift+enter로 결과값 보이게 할 수 있음.
Vec.a <- c(1,2,5,7,8)
Vec.b <- c(1:5)
Vec.c <- seq(1,10, by=2)
Vec.b+Vec.c
[1] 2 5 8 11 14
var.a<-c("Hello", "world", "is", "good ! !")
var.a
[1] "Hello" "world" "is" "good ! !"
row(case, 대상하나의 정보)과 column(var+data)로 구성된 표
vec.name <- c("A", "B", "C", "D")
vec.name
[1] "A" "B" "C" "D"
vec.eng<-c(90, 80, 60, 70)
vec.eng
[1] 90 80 60 70
vec.math<-c(50, 60, 100, 20)
vec.math
[1] 50 60 100 20
vec.class<-c(1,1,2,2)
df.score <- data.frame(vec.name, vec.eng, vec.math)
df.score <- data.frame(vec.name, vec.eng, vec.math, vec.class)
df.score
vec.name vec.eng vec.math vec.class
1 A 90 50 1
2 B 80 60 1
3 C 60 100 2
4 D 70 20 2
id <- c(1,2,3,4,5,6)
class <- c(1,1,1,1,2,2)
math <- c(50,60,45,30,25,50)
english <- c(98,97,86,98,80,89)
science <- c(50,60,78,58,65,98)
df.score1 <- data.frame(id,class,math,english,science)
df.score1
id class math english science
1 1 1 50 98 50
2 2 1 60 97 60
3 3 1 45 86 78
4 4 1 30 98 58
5 5 2 25 80 65
6 6 2 50 89 98
id1<-c(1:10)
class1<-c(1,1,1,1,1,2,2,2,2,2)
match1<-c(50,60,30,43,22,30,30,30,90,100)
english1<-c(30,20,20,22,11,22,22,33,33,33)
science1<-c(20,20,33,33,3,33,22,11,11,22)
df.score2<-data.frame(id1,class1,match1,english1,science1)
df.score2
id1 class1 match1 english1 science1
1 1 1 50 30 20
2 2 1 60 20 20
3 3 1 30 20 33
4 4 1 43 22 33
5 5 1 22 11 3
6 6 2 30 22 33
7 7 2 30 22 22
8 8 2 30 33 11
9 9 2 90 33 11
10 10 2 100 33 22
head(df.score2, 8)
id1 class1 match1 english1 science1
1 1 1 50 30 20
2 2 1 60 20 20
3 3 1 30 20 33
4 4 1 43 22 33
5 5 1 22 11 3
6 6 2 30 22 33
7 7 2 30 22 22
8 8 2 30 33 11
tail(df.score2,7)
id1 class1 match1 english1 science1
4 4 1 43 22 33
5 5 1 22 11 3
6 6 2 30 22 33
7 7 2 30 22 22
8 8 2 30 33 11
9 9 2 90 33 11
10 10 2 100 33 22
View(df.score2)
dim(df.score)
[1] 4 3
str(df.score2)
'data.frame': 10 obs. of 5 variables:
$ id1 : int 1 2 3 4 5 6 7 8 9 10
$ class1 : num 1 1 1 1 1 2 2 2 2 2
$ match1 : num 50 60 30 43 22 30 30 30 90 100
$ english1: num 30 20 20 22 11 22 22 33 33 33
$ science1: num 20 20 33 33 3 33 22 11 11 22
summary(df.score2)
id1 class1 match1 english1 science1
Min. : 1.00 Min. :1.0 Min. : 22.0 Min. :11.00 Min. : 3.00
1st Qu.: 3.25 1st Qu.:1.0 1st Qu.: 30.0 1st Qu.:20.50 1st Qu.:13.25
Median : 5.50 Median :1.5 Median : 36.5 Median :22.00 Median :21.00
Mean : 5.50 Mean :1.5 Mean : 48.5 Mean :24.60 Mean :20.80
3rd Qu.: 7.75 3rd Qu.:2.0 3rd Qu.: 57.5 3rd Qu.:32.25 3rd Qu.:30.25
Max. :10.00 Max. :2.0 Max. :100.0 Max. :33.00 Max. :33.00
ctrl+shift+M 파이프라인 생성(%>%)
df.score
library(dplyr)
df.score %>%
data.table::setnames(
old = "vec.name",
new = "이름"
)
df.score
hist(df.score2$mean)
hist(df.score2$total)