Principles of Data Visualization and Introduction to ggplot2

I have provided you with data about the 5,000 fastest growing companies in the US, as compiled by Inc. magazine. lets read this in:

inc <- read.csv("https://raw.githubusercontent.com/charleyferrari/CUNY_DATA_608/master/module1/Data/inc5000_data.csv", header= TRUE)

And lets preview this data:

head(inc)
##   Rank                         Name Growth_Rate   Revenue
## 1    1                         Fuhu      421.48 1.179e+08
## 2    2        FederalConference.com      248.31 4.960e+07
## 3    3                The HCI Group      245.45 2.550e+07
## 4    4                      Bridger      233.08 1.900e+09
## 5    5                       DataXu      213.37 8.700e+07
## 6    6 MileStone Community Builders      179.38 4.570e+07
##                       Industry Employees         City State
## 1 Consumer Products & Services       104   El Segundo    CA
## 2          Government Services        51     Dumfries    VA
## 3                       Health       132 Jacksonville    FL
## 4                       Energy        50      Addison    TX
## 5      Advertising & Marketing       220       Boston    MA
## 6                  Real Estate        63       Austin    TX
summary(inc)
##       Rank                                     Name       Growth_Rate     
##  Min.   :   1   110 Consulting                   :   1   Min.   :  0.340  
##  1st Qu.:1252   11thStreetCoffee.com             :   1   1st Qu.:  0.770  
##  Median :2502   123 Exteriors                    :   1   Median :  1.420  
##  Mean   :2502   1st American Systems and Services:   1   Mean   :  4.612  
##  3rd Qu.:3751   1st Equity                       :   1   3rd Qu.:  3.290  
##  Max.   :5000   1-Stop Translation USA           :   1   Max.   :421.480  
##                 (Other)                          :4995                    
##     Revenue                                  Industry      Employees      
##  Min.   :2.000e+06   IT Services                 : 733   Min.   :    1.0  
##  1st Qu.:5.100e+06   Business Products & Services: 482   1st Qu.:   25.0  
##  Median :1.090e+07   Advertising & Marketing     : 471   Median :   53.0  
##  Mean   :4.822e+07   Health                      : 355   Mean   :  232.7  
##  3rd Qu.:2.860e+07   Software                    : 342   3rd Qu.:  132.0  
##  Max.   :1.010e+10   Financial Services          : 260   Max.   :66803.0  
##                      (Other)                     :2358   NA's   :12       
##             City          State     
##  New York     : 160   CA     : 701  
##  Chicago      :  90   TX     : 387  
##  Austin       :  88   NY     : 311  
##  Houston      :  76   VA     : 283  
##  San Francisco:  75   FL     : 282  
##  Atlanta      :  74   IL     : 273  
##  (Other)      :4438   (Other):2764

Think a bit on what these summaries mean. Use the space below to add some more relevant non-visual exploratory information you think helps you understand this data:

library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.0.0     ✔ purrr   0.2.5
## ✔ tibble  1.4.2     ✔ dplyr   0.7.6
## ✔ tidyr   0.8.1     ✔ stringr 1.3.1
## ✔ readr   1.1.1     ✔ forcats 0.3.0
## ── Conflicts ───────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
#Summary of Employees by Industry
inc %>%
  filter(complete.cases(.)) %>%
  group_by(Industry) %>%
  summarise(count = n(),
            min = min(Employees),
            avg = mean(Employees),
            med = median(Employees),
            max = max(Employees)) %>%
  arrange(desc(med))
## # A tibble: 25 x 6
##    Industry               count   min   avg   med   max
##    <fct>                  <int> <dbl> <dbl> <dbl> <dbl>
##  1 Security                  73     7  562.  77   20000
##  2 Human Resources          196     4 1158.  71.5 66803
##  3 Government Services      202     6  130.  71    1352
##  4 Health                   354     2  233.  71    4390
##  5 Energy                   109     2  243.  70    2501
##  6 Financial Services       260     5  183.  70    1829
##  7 Software                 341     1  150.  69    3000
##  8 Environmental Services    51     4  199.  67    5347
##  9 Food & Beverage          129     3  511.  65    7681
## 10 Telecommunications       127     6  243.  65   10000
## # ... with 15 more rows
#Number of Unique Cities Appears by State
inc %>%
  group_by(State) %>%
  summarise(Cities = n_distinct(City)) %>%
  arrange(desc(Cities))
## # A tibble: 52 x 2
##    State Cities
##    <fct>  <int>
##  1 CA       204
##  2 IL       104
##  3 FL       102
##  4 NJ        97
##  5 NY        90
##  6 PA        80
##  7 OH        79
##  8 MA        72
##  9 TX        67
## 10 VA        56
## # ... with 42 more rows
#Summary of Growth Rate by Industry
inc %>%
  filter(complete.cases(.)) %>%
  group_by(Industry) %>%
  summarise(count = n(),
            min = min(Growth_Rate),
            avg = mean(Growth_Rate),
            med = median(Growth_Rate),
            max = max(Growth_Rate)) %>%
  arrange(desc(med))
## # A tibble: 25 x 6
##    Industry                     count   min   avg   med   max
##    <fct>                        <int> <dbl> <dbl> <dbl> <dbl>
##  1 Government Services            202  0.35  7.24  2.11 248. 
##  2 Energy                         109  0.35  9.60  2.08 233. 
##  3 Real Estate                     95  0.35  7.82  2.08 179. 
##  4 Media                           54  0.41  4.37  1.94  23.0
##  5 Consumer Products & Services   203  0.35  8.78  1.82 421. 
##  6 Retail                         203  0.34  6.18  1.76 167. 
##  7 Software                       341  0.35  5.03  1.7  129. 
##  8 Advertising & Marketing        471  0.35  6.23  1.61 213. 
##  9 Health                         354  0.35  4.87  1.57 245. 
## 10 Security                        73  0.37  3.39  1.54  31.2
## # ... with 15 more rows
#Correlation between Number of Employees and Growth Rate
temp <- inc %>%
  filter(complete.cases(.))
cor(temp$Employees, temp$Growth_Rate)
## [1] -0.0178689

Question 1

Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States, so consider which axis you should use. This visualization is ultimately going to be consumed on a ‘portrait’ oriented screen (ie taller than wide), which should further guide your layout choices.

inc %>%
  group_by(State) %>%
  count() %>%
  ggplot(aes(reorder(State, n), n)) +
  geom_bar(aes(fill=n), stat='identity', show.legend = FALSE) +
  geom_text(aes(y = n + 15, label=n)) +
  coord_flip() + 
  scale_fill_continuous(low='blue', high='red') +
  scale_y_continuous(expand = c(0, 0, .02, .02), labels=seq(0, 800, 50), breaks = seq(0, 800, 50)) +
  theme_bw() + 
  theme(panel.grid.major.y = element_blank(),
        axis.text.y = element_text(size=17, family='mono'),
        axis.text.x = element_text(size=14),
        axis.title = element_text(size=20),
        plot.title = element_text(size=25, face='bold'),
        plot.subtitle = element_text(size=12)) +
  labs(title = 'Fastest Growing Companies By State', 
       subtitle = 'By Brian Weinfeld',
       y = 'Number of Companies',
       x = 'State')

Quesiton 2

Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s complete.cases() function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.

inc %>%
  filter(complete.cases(.),
         State == 'NY') %>%
  ggplot(aes(reorder(Industry, Employees, FUN=median), Employees)) +
  geom_boxplot() +
  scale_y_log10(labels = scales::comma) +
  scale_x_discrete(expand = c(0.05, 0.05, 0.05, 0.05)) +
  annotation_logticks(sides = 'l') + 
  theme_bw() + 
  theme(axis.text.x = element_text(angle = -30, vjust = 1, hjust = 0),
        panel.grid.minor.y = element_blank(),
        plot.margin = margin(0, 75, 0, 0)) +
  labs(title = 'Distribution of Employees by Industry in New York',
       subtitle = 'By Brian Weinfeld',
       x = 'Industry')

Question 3

Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.

inc %>%
  filter(!is.na(Revenue),
         !is.na(Employees)) %>%
  transform(Per = Revenue / Employees) %>%
  ggplot(aes(reorder(Industry, Per, FUN=median), Per)) +
  geom_boxplot() +
  scale_y_log10(labels = scales::comma) +
  scale_x_discrete(expand = c(.05, .05, .05, .05)) +
  annotation_logticks(sides='l') +
  theme_bw() +
  theme(axis.text.x = element_text(angle = -30, vjust = 1, hjust = 0),
        panel.grid.minor.y = element_blank(),
        plot.margin = margin(0, 100, 0, 0)) +
  labs(title = 'Revenue Per Employee By Industry',
       subtitle = 'By Brian Weinfeld',
       x = 'Industry',
       y = 'Revenue / Employee')