
One of the best ways to explore and try to understand a large dataset.
loadstuff <-c("ggplot2", "devtools", "dplyr", "stringr", "maps", "mapdata")
lapply(loadstuff, require, character.only=TRUE)
states <- map_data("state")
ggplot(data = states) + geom_polygon(aes(x = long, y = lat, fill = region, group = group), color = "white") + coord_fixed(1.3) + guides(fill=FALSE) # do this to leave off the color legend
require(viridis); require(mapproj)
url.unemploy_map <- url("http://sharpsightlabs.com/wp-content/datasets/unemployment_map_data_2016_nov.RData")
load(url.unemploy_map)
ggplot() +
geom_polygon(data = map.county_unemp, aes(x = long, y = lat, group = group, fill = unemployed_rate)) +
geom_polygon(data = map.states, aes(x = long, y = lat, group = group), color = "#EEEEEE", fill = NA, size = .3) +
coord_map("albers", lat0 = 30, lat1 = 40) +
labs(title = "U.S. unemployment rate, by county" , subtitle = "November, 2016") +
labs(fill = "% unemployed") +
scale_fill_viridis() +
theme(text = element_text(family = "Gill Sans", color = "#444444")
,plot.title = element_text(size = 30)
,plot.subtitle = element_text(size = 20)
,axis.text = element_blank()
,axis.title = element_blank()
,axis.ticks = element_blank()
,panel.grid = element_blank()
,legend.position = c(.9,.4)
,legend.title = element_text(size = 16)
,legend.background = element_blank()
,panel.background = element_blank()
)
scale_fill_viridis() + theme(text = element_text(family = “Gill Sans”, color = “#444444”) ,plot.title = element_text(size = 30) ,plot.subtitle = element_text(size = 20) ,axis.text = element_blank() ,axis.title = element_blank() ,axis.ticks = element_blank() ,panel.grid = element_blank() ,legend.position = c(.9,.4) ,legend.title = element_text(size = 16) ,legend.background = element_blank() ,panel.background = element_blank() )