The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignment on Moodle. Points will be deducted for uploading the improper format.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.library("datasets")
data <- anscombe
fBasics() package!)library("fBasics")
## Warning: package 'fBasics' was built under R version 3.4.4
## Loading required package: timeDate
## Warning: package 'timeDate' was built under R version 3.4.2
## Loading required package: timeSeries
## Warning: package 'timeSeries' was built under R version 3.4.4
basicStats(data)
## x1 x2 x3 x4 y1 y2
## nobs 11.000000 11.000000 11.000000 11.000000 11.000000 11.000000
## NAs 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## Minimum 4.000000 4.000000 4.000000 8.000000 4.260000 3.100000
## Maximum 14.000000 14.000000 14.000000 19.000000 10.840000 9.260000
## 1. Quartile 6.500000 6.500000 6.500000 8.000000 6.315000 6.695000
## 3. Quartile 11.500000 11.500000 11.500000 8.000000 8.570000 8.950000
## Mean 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909
## Median 9.000000 9.000000 9.000000 8.000000 7.580000 8.140000
## Sum 99.000000 99.000000 99.000000 99.000000 82.510000 82.510000
## SE Mean 1.000000 1.000000 1.000000 1.000000 0.612541 0.612568
## LCL Mean 6.771861 6.771861 6.771861 6.771861 6.136083 6.136024
## UCL Mean 11.228139 11.228139 11.228139 11.228139 8.865735 8.865795
## Variance 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629
## Stdev 3.316625 3.316625 3.316625 3.316625 2.031568 2.031657
## Skewness 0.000000 0.000000 0.000000 2.466911 -0.048374 -0.978693
## Kurtosis -1.528926 -1.528926 -1.528926 4.520661 -1.199123 -0.514319
## y3 y4
## nobs 11.000000 11.000000
## NAs 0.000000 0.000000
## Minimum 5.390000 5.250000
## Maximum 12.740000 12.500000
## 1. Quartile 6.250000 6.170000
## 3. Quartile 7.980000 8.190000
## Mean 7.500000 7.500909
## Median 7.110000 7.040000
## Sum 82.500000 82.510000
## SE Mean 0.612196 0.612242
## LCL Mean 6.135943 6.136748
## UCL Mean 8.864057 8.865070
## Variance 4.122620 4.123249
## Stdev 2.030424 2.030579
## Skewness 1.380120 1.120774
## Kurtosis 1.240044 0.628751
cor(data$x1,data$y1)
## [1] 0.8164205
cor(data$x2,data$y2)
## [1] 0.8162365
cor(data$x3,data$y3)
## [1] 0.8162867
cor(data$x4,data$y4)
## [1] 0.8165214
cor(data)
## x1 x2 x3 x4 y1 y2
## x1 1.0000000 1.0000000 1.0000000 -0.5000000 0.8164205 0.8162365
## x2 1.0000000 1.0000000 1.0000000 -0.5000000 0.8164205 0.8162365
## x3 1.0000000 1.0000000 1.0000000 -0.5000000 0.8164205 0.8162365
## x4 -0.5000000 -0.5000000 -0.5000000 1.0000000 -0.5290927 -0.7184365
## y1 0.8164205 0.8164205 0.8164205 -0.5290927 1.0000000 0.7500054
## y2 0.8162365 0.8162365 0.8162365 -0.7184365 0.7500054 1.0000000
## y3 0.8162867 0.8162867 0.8162867 -0.3446610 0.4687167 0.5879193
## y4 -0.3140467 -0.3140467 -0.3140467 0.8165214 -0.4891162 -0.4780949
## y3 y4
## x1 0.8162867 -0.3140467
## x2 0.8162867 -0.3140467
## x3 0.8162867 -0.3140467
## x4 -0.3446610 0.8165214
## y1 0.4687167 -0.4891162
## y2 0.5879193 -0.4780949
## y3 1.0000000 -0.1554718
## y4 -0.1554718 1.0000000
plot(data$x1,data$y1)
plot(data$x2,data$y2)
plot(data$x3,data$y3)
plot(data$x4,data$y4)
par(mfrow=c(2,2))
plot(data$x1,data$y1,pch=20)
plot(data$x2,data$y2,pch=20)
plot(data$x3,data$y3,pch=20)
plot(data$x4,data$y4,pch=20)
lm() function.lm(data$y1 ~ data$x1)
##
## Call:
## lm(formula = data$y1 ~ data$x1)
##
## Coefficients:
## (Intercept) data$x1
## 3.0001 0.5001
lm(data$y2 ~ data$x2)
##
## Call:
## lm(formula = data$y2 ~ data$x2)
##
## Coefficients:
## (Intercept) data$x2
## 3.001 0.500
lm(data$y3 ~ data$x3)
##
## Call:
## lm(formula = data$y3 ~ data$x3)
##
## Coefficients:
## (Intercept) data$x3
## 3.0025 0.4997
lm(data$y4 ~ data$x4)
##
## Call:
## lm(formula = data$y4 ~ data$x4)
##
## Coefficients:
## (Intercept) data$x4
## 3.0017 0.4999
par(mfrow=c(2,2))
plot(data$x1,data$y1,pch=20)
abline(lm(data$y1 ~ data$x1))
plot(data$x2,data$y2,pch=20)
abline(lm(data$y2 ~ data$x2))
plot(data$x3,data$y3,pch=20)
abline(lm(data$y3 ~ data$x3))
plot(data$x4,data$y4,pch=20)
abline(lm(data$y4 ~ data$x4))
summary(lm(data$y1 ~ data$x1))
Call: lm(formula = data\(y1 ~ data\)x1)
Residuals: Min 1Q Median 3Q Max -1.92127 -0.45577 -0.04136 0.70941 1.83882
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 * data$x1 0.5001 0.1179 4.241 0.00217 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
summary(lm(data$y2 ~ data$x2))
Call: lm(formula = data\(y2 ~ data\)x2)
Residuals: Min 1Q Median 3Q Max -1.9009 -0.7609 0.1291 0.9491 1.2691
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.001 1.125 2.667 0.02576 * data$x2 0.500 0.118 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
summary(lm(data$y3 ~ data$x3))
Call: lm(formula = data\(y3 ~ data\)x3)
Residuals: Min 1Q Median 3Q Max -1.1586 -0.6146 -0.2303 0.1540 3.2411
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0025 1.1245 2.670 0.02562 * data$x3 0.4997 0.1179 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
summary(lm(data$y4 ~ data$x4))
Call: lm(formula = data\(y4 ~ data\)x4)
Residuals: Min 1Q Median 3Q Max -1.751 -0.831 0.000 0.809 1.839
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 * data$x4 0.4999 0.1178 4.243 0.00216 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
Anscombe data consists of 8 variables with 11 observations. In this data set there are four datasets (x1,y1…..x4,y4). To understand the relationship and build models with these four pairs of data sets we need to first visualize these data points by using statistics and scatterplot which can show us how actual data values are distributed. Scatterplot show all data sets are different but model statistics show almost same adjusted R square.Therefore, visulization is necessary to differentiate between the datasets.