** Introduction **
Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: [http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har] (see the section on the Weight Lifting Exercise Dataset).
The training data for this project are available here:
[https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv]
The test data are available here:
[https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv]
The data for this project come from this source: [http://groupware.les.inf.puc-rio.br/har]. If you use the document you create for this class for any purpose please cite them as they have been very generous in allowing their data to be used for this kind of assignment.
The Dataset has been downloaded from the internet and has been loaded into two seperate dataframes, __“training__ and “testing”. The __“training__ data set has 19622 number of records and the __“testing__ data set has 20 records. The number of variables is 160.
library(caret)
## Warning: package 'caret' was built under R version 3.4.4
## Loading required package: lattice
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.4.4
library(rpart)
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 3.4.4
library(RColorBrewer)
library(RGtk2)
## Warning: package 'RGtk2' was built under R version 3.4.4
library(rattle)
## Warning: package 'rattle' was built under R version 3.4.4
## Rattle: A free graphical interface for data science with R.
## Version 5.1.0 Copyright (c) 2006-2017 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(randomForest)
## Warning: package 'randomForest' was built under R version 3.4.4
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:rattle':
##
## importance
## The following object is masked from 'package:ggplot2':
##
## margin
library(gbm)
## Warning: package 'gbm' was built under R version 3.4.4
## Loading required package: survival
##
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
##
## cluster
## Loading required package: splines
## Loading required package: parallel
## Loaded gbm 2.1.3
Here are the datasets, loaded directly from web and then downloaded.
train_url <- "http://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
test_url <- "http://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
init_org_training_data <- read.csv(url(train_url))
init_org_testing_data <- read.csv(url(test_url))
dim(init_org_training_data)
## [1] 19622 160
dim(init_org_testing_data)
## [1] 20 160
There are 3 parts in Data Cleansing.
non_zero_var <- nearZeroVar(init_org_training_data)
org_training_data <- init_org_training_data[,-non_zero_var]
org_testing_data <- init_org_testing_data[,-non_zero_var]
dim(org_training_data)
## [1] 19622 100
dim(org_testing_data)
## [1] 20 100
na_val_col <- sapply(org_training_data, function(x) mean(is.na(x))) > 0.95
org_training_data <- org_training_data[,na_val_col == FALSE]
org_testing_data <- org_testing_data[,na_val_col == FALSE]
dim(org_training_data)
## [1] 19622 59
dim(org_testing_data)
## [1] 20 59
org_training_data <- org_training_data[,8:59]
org_testing_data <- org_testing_data[,8:59]
dim(org_training_data)
## [1] 19622 52
dim(org_testing_data)
## [1] 20 52
We can also check if the training data has the “classe” variable in it and the testing data has “problem_id” variable in it.
##colnames_train <- names(org_training_data)
##org_training_data <- init_org_training_data[, c(colnames_train, "problem_id")]
colnames(org_training_data)
## [1] "pitch_belt" "yaw_belt" "total_accel_belt"
## [4] "gyros_belt_x" "gyros_belt_y" "gyros_belt_z"
## [7] "accel_belt_x" "accel_belt_y" "accel_belt_z"
## [10] "magnet_belt_x" "magnet_belt_y" "magnet_belt_z"
## [13] "roll_arm" "pitch_arm" "yaw_arm"
## [16] "total_accel_arm" "gyros_arm_x" "gyros_arm_y"
## [19] "gyros_arm_z" "accel_arm_x" "accel_arm_y"
## [22] "accel_arm_z" "magnet_arm_x" "magnet_arm_y"
## [25] "magnet_arm_z" "roll_dumbbell" "pitch_dumbbell"
## [28] "yaw_dumbbell" "total_accel_dumbbell" "gyros_dumbbell_x"
## [31] "gyros_dumbbell_y" "gyros_dumbbell_z" "accel_dumbbell_x"
## [34] "accel_dumbbell_y" "accel_dumbbell_z" "magnet_dumbbell_x"
## [37] "magnet_dumbbell_y" "magnet_dumbbell_z" "roll_forearm"
## [40] "pitch_forearm" "yaw_forearm" "total_accel_forearm"
## [43] "gyros_forearm_x" "gyros_forearm_y" "gyros_forearm_z"
## [46] "accel_forearm_x" "accel_forearm_y" "accel_forearm_z"
## [49] "magnet_forearm_x" "magnet_forearm_y" "magnet_forearm_z"
## [52] "classe"
colnames(org_testing_data)
## [1] "pitch_belt" "yaw_belt" "total_accel_belt"
## [4] "gyros_belt_x" "gyros_belt_y" "gyros_belt_z"
## [7] "accel_belt_x" "accel_belt_y" "accel_belt_z"
## [10] "magnet_belt_x" "magnet_belt_y" "magnet_belt_z"
## [13] "roll_arm" "pitch_arm" "yaw_arm"
## [16] "total_accel_arm" "gyros_arm_x" "gyros_arm_y"
## [19] "gyros_arm_z" "accel_arm_x" "accel_arm_y"
## [22] "accel_arm_z" "magnet_arm_x" "magnet_arm_y"
## [25] "magnet_arm_z" "roll_dumbbell" "pitch_dumbbell"
## [28] "yaw_dumbbell" "total_accel_dumbbell" "gyros_dumbbell_x"
## [31] "gyros_dumbbell_y" "gyros_dumbbell_z" "accel_dumbbell_x"
## [34] "accel_dumbbell_y" "accel_dumbbell_z" "magnet_dumbbell_x"
## [37] "magnet_dumbbell_y" "magnet_dumbbell_z" "roll_forearm"
## [40] "pitch_forearm" "yaw_forearm" "total_accel_forearm"
## [43] "gyros_forearm_x" "gyros_forearm_y" "gyros_forearm_z"
## [46] "accel_forearm_x" "accel_forearm_y" "accel_forearm_z"
## [49] "magnet_forearm_x" "magnet_forearm_y" "magnet_forearm_z"
## [52] "problem_id"
As per recommendation of the course __ Practical Machine Learning__ , we will be seggregating our org_training_data into 2 different parts, one is the training set (consisiting 60% of the total data) and test set (consisting 40% of the total data)
inTrain <- createDataPartition(org_training_data$classe, p=0.6, list=FALSE)
training <- org_training_data[inTrain,]
testing <- org_training_data[-inTrain,]
dim(training)
## [1] 11776 52
dim(testing)
## [1] 7846 52
DT_modfit <- train(classe ~ ., data = training, method="rpart")
Prediction in terms of Decision Tree Model
DT_prediction <- predict(DT_modfit, testing)
confusionMatrix(DT_prediction, testing$classe)
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 2023 662 678 579 345
## B 41 504 44 231 291
## C 128 284 498 154 308
## D 33 68 148 322 67
## E 7 0 0 0 431
##
## Overall Statistics
##
## Accuracy : 0.4815
## 95% CI : (0.4704, 0.4926)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.3206
## Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.9064 0.33202 0.36404 0.25039 0.29889
## Specificity 0.5967 0.90408 0.86508 0.95183 0.99891
## Pos Pred Value 0.4719 0.45365 0.36297 0.50470 0.98402
## Neg Pred Value 0.9413 0.84944 0.86562 0.86626 0.86353
## Prevalence 0.2845 0.19347 0.17436 0.16391 0.18379
## Detection Rate 0.2578 0.06424 0.06347 0.04104 0.05493
## Detection Prevalence 0.5464 0.14160 0.17487 0.08132 0.05582
## Balanced Accuracy 0.7515 0.61805 0.61456 0.60111 0.64890
rpart.plot(DT_modfit$finalModel, roundint=FALSE)
We can see that the prediction accuracy is 50% which is not upto the desired level.
RF_modfit <- train(classe ~ ., data = training, method = "rf", ntree = 100)
Prediction in terms of Random Forest Model
RF_prediction <- predict(RF_modfit, testing)
RF_pred_conf <- confusionMatrix(RF_prediction, testing$classe)
RF_pred_conf
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 2230 14 0 0 0
## B 1 1495 10 0 0
## C 1 7 1353 17 1
## D 0 0 5 1268 5
## E 0 2 0 1 1436
##
## Overall Statistics
##
## Accuracy : 0.9918
## 95% CI : (0.9896, 0.9937)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9897
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.9991 0.9848 0.9890 0.9860 0.9958
## Specificity 0.9975 0.9983 0.9960 0.9985 0.9995
## Pos Pred Value 0.9938 0.9927 0.9811 0.9922 0.9979
## Neg Pred Value 0.9996 0.9964 0.9977 0.9973 0.9991
## Prevalence 0.2845 0.1935 0.1744 0.1639 0.1838
## Detection Rate 0.2842 0.1905 0.1724 0.1616 0.1830
## Detection Prevalence 0.2860 0.1919 0.1758 0.1629 0.1834
## Balanced Accuracy 0.9983 0.9916 0.9925 0.9922 0.9977
Here is the plot
plot(RF_pred_conf$table, col = RF_pred_conf$byClass,
main = paste("Random Forest - Accuracy Level =",
round(RF_pred_conf$overall['Accuracy'], 4)))
From the Confusion Matrix, we can clearly see that the prediction accuracy of Random Forest model is 99% which is satisfactory.
GBM_modfit <- train(classe ~ ., data = training, method = "gbm", verbose = FALSE)
GBM_modfit$finalModel
## A gradient boosted model with multinomial loss function.
## 150 iterations were performed.
## There were 51 predictors of which 42 had non-zero influence.
Prediction in terms of GBM Model
#GBM_prediction <- predict(GBM_modfit, testing, type = "class", n.trees = 5, type = link)
GBM_prediction <- predict(GBM_modfit, testing)
GBM_pred_conf <- confusionMatrix(GBM_prediction, testing$classe)
GBM_pred_conf
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 2191 61 0 2 1
## B 26 1414 40 7 11
## C 8 36 1313 40 16
## D 6 1 12 1220 18
## E 1 6 3 17 1396
##
## Overall Statistics
##
## Accuracy : 0.9602
## 95% CI : (0.9557, 0.9645)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9497
## Mcnemar's Test P-Value : 4.337e-08
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.9816 0.9315 0.9598 0.9487 0.9681
## Specificity 0.9886 0.9867 0.9846 0.9944 0.9958
## Pos Pred Value 0.9716 0.9439 0.9292 0.9706 0.9810
## Neg Pred Value 0.9927 0.9836 0.9915 0.9900 0.9928
## Prevalence 0.2845 0.1935 0.1744 0.1639 0.1838
## Detection Rate 0.2793 0.1802 0.1673 0.1555 0.1779
## Detection Prevalence 0.2874 0.1909 0.1801 0.1602 0.1814
## Balanced Accuracy 0.9851 0.9591 0.9722 0.9715 0.9819
Here is the plot
plot(GBM_pred_conf$table, col = GBM_pred_conf$byClass,
main = paste("Gradient Boosting - Accuracy Level =",
round(GBM_pred_conf$overall['Accuracy'], 4)))
From Gradient Boost Model, the prediction accuracy is 95% which is satisfactory.
RF_pred_conf$overall
## Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
## 0.9918430 0.9896806 0.9895954 0.9937126 0.2844762
## AccuracyPValue McnemarPValue
## 0.0000000 NaN
GBM_pred_conf$overall
## Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
## 9.602345e-01 9.496836e-01 9.556727e-01 9.644503e-01 2.844762e-01
## AccuracyPValue McnemarPValue
## 0.000000e+00 4.336741e-08
After checking the Overall Statistics data, the Random Forest model has definitely more accuracy than GBM. Hence we will be selecting Random Forest model for final prediction from org_testing_data .
Final_RF_prediction <- predict(RF_modfit, org_testing_data )
Final_RF_prediction
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E