MATD051 - Análise de Séries Temporais A

Aula 1

Kim Samejima

27-Ago-2018

Bibliografia Principal

Robert H. SHUMWAY & David S. STOFFER - Time Series Analysis and Its Applications With R Examples — 4th Ed., 2016 https:www.stat.pitt.edu/stoffer/tsa4/

Pedro A. Morettin, Econometria Financeira, 3 ed., 2017.
https://www.ime.usp.br/~pam/ef.html
https://rpubs.com/Econfin

Exemplo 1(Shumway & Stoffer, 2016): Aquecimento global

library(astsa)
plot(globtemp, type="o", ylab="Global Temperature Deviations",col="darkblue")

Exemplo 2: PETR4 de 02-jan-2014 a 02-jul-2018

db_petr4=read.table("PETR4.csv", h=T, sep=",",dec=".")
r_petr4=diff(log(db_petr4$cotacao))
par(mfrow=c(3,1))
plot.ts(db_petr4$cotacao,col="darkblue")
plot.ts(r_petr4,col="darkblue")
plot.ts(r_petr4^2,col="darkblue")

Exemplo 3 (Morettin, P.A. e Toloi, C.M.C., 2004): Manchas solares

db_manchas=read.table("./ast-pam/manchas.csv", h=T, sep=",",dec=".")
plot.ts(db_manchas$manchas,col="darkblue")

Exemplo 4: Ruído branco

w = rnorm(2000,0,1)
plot.ts(w, main="Ruído Branco",col="darkblue")

Exemplo 5: Passeio aleatório

rw<-numeric()
rw[1] = rnorm(1,0,1)
for(t in 2:2000){
  rw[t]=rw[t-1]+rnorm(1,0,1)
}
plot.ts(rw, main="Passeio Aleatório",col="darkblue")

Exemplo 6 (Shumway & Stoffer, 2016): Passeio aleatório com tendência

set.seed(154)
 # so you can reproduce the results
w = rnorm(200); x = cumsum(w)
 # two commands in one line
wd = w +.2;
 xd = cumsum(wd)
plot.ts(xd, ylim=c(-5,55), main="random walk", ylab='')
lines(x, col=4); abline(h=0, col=4, lty=2); abline(a=0, b=.2, lty=2)

Exemplo 7 (Shumway & Stoffer, 2016, adaptado):

cs_l = 2*cos(2*pi*(1:500)/200 + .6*pi); w = rnorm(500,0,1)
cs = 2*cos(2*pi*1:500/50 + .6*pi); w = rnorm(500,0,1)
par(mfrow=c(3,2), mar=c(3,2,2,1), cex.main=1.5)
plot.ts(cs_l, main=expression(2*cos(2*pi*t/200+.6*pi)))
plot.ts(cs_l+cs+w, main=expression(2*cos(2*pi*t/200+.6*pi)+2*cos(2*pi*t/50+.6*pi) + N(0,1)))
plot.ts(cs, main=expression(2*cos(2*pi*t/50+.6*pi)))
plot.ts(cs_l+cs+5*w, main=expression(2*cos(2*pi*t/200+.6*pi)+2*cos(2*pi*t/50+.6*pi) + N(0,25)))
plot.ts(cs_l+cs, main=expression(2*cos(2*pi*t/200+.6*pi)+2*cos(2*pi*t/50+.6*pi)))

Tópicos em Séries Temporais

Bibliografia Complementar