- What is Embedding Layer
- Related work of Embedding Layer in KDD 2018
August 26, 2018
\[\begin{array}{ccc} .1 & .2 & .3 \\ .2 & .3 & .4 \\ .3 & .4 & .5 \\ .4 & .5 & .6 \\ .5 & .6 & .7 \\ \end{array}\]
Source: Cui et al. (A survey on network embedding, 2017)
are at my seat (7F). Please feel free to take some of them.
if you are interested.Bai, Xiao; Ordentlich, Erik; Zhang, Yuanyuan; Feng, Andy; Ratnaparkhi, Adwait; Somvanshi, Reena; Tjahjadi, Aldi [Scalable query n-gram embedding for improving matching and relevance in sponsored search; 2018]: Scalable query n-gram embedding for improving matching and relevance in sponsored search, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 52–61, available at: http://doi.acm.org/10.1145/3219819.3219897.
Chen, Hongxu; Yin, Hongzhi; Wang, Weiqing; Wang, Hao; Nguyen, Quoc Viet Hung; Li, Xue [PME; 2018a]: PME: Projected metric embedding on heterogeneous networks for link prediction, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 1177–1186, available at: http://doi.acm.org/10.1145/3219819.3219986.
Chen, Xumin; Cui, Peng; Yi, Lingling; Yang, Shiqiang [Scalable optimization for embedding highly-dynamic and recency-sensitive data; 2018b]: Scalable optimization for embedding highly-dynamic and recency-sensitive data, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 130–138, available at: http://doi.acm.org/10.1145/3219819.3219898.
Cui, Peng; Wang, Xiao; Pei, Jian; Zhu, Wenwu [A survey on network embedding; 2017]: A survey on network embedding, in: CoRR, vol. abs/1711.08752, available at: http://arxiv.org/abs/1711.08752.
Donnat, Claire; Zitnik, Marinka; Hallac, David; Leskovec, Jure [Learning structural node embeddings via diffusion wavelets; 2018]: Learning structural node embeddings via diffusion wavelets, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 1320–1329, available at: http://doi.acm.org/10.1145/3219819.3220025.
Gao, Hongchang; Huang, Heng [Self-paced network embedding; 2018]: Self-paced network embedding, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 1406–1415, available at: http://doi.acm.org/10.1145/3219819.3220041.
Grbovic, Mihajlo; Cheng, Haibin [Real-time personalization using embeddings for search ranking at airbnb; 2018]: Real-time personalization using embeddings for search ranking at airbnb, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 311–320, available at: http://doi.acm.org/10.1145/3219819.3219885.
Liang, Shangsong; Zhang, Xiangliang; Ren, Zhaochun; Kanoulas, Evangelos [Dynamic embeddings for user profiling in twitter; 2018]: Dynamic embeddings for user profiling in twitter, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 1764–1773, available at: http://doi.acm.org/10.1145/3219819.3220043.
Liu, Jie; He, Zhicheng; Wei, Lai; Huang, Yalou [Content to node; 2018a]: Content to node: Self-translation network embedding, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 1794–1802, available at: http://doi.acm.org/10.1145/3219819.3219988.
Liu, Ninghao; Huang, Xiao; Li, Jundong; Hu, Xia [On interpretation of network embedding via taxonomy induction; 2018b]: On interpretation of network embedding via taxonomy induction, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 1812–1820, available at: http://doi.acm.org/10.1145/3219819.3220001.
Liu, Zemin; Zheng, Vincent W.; Zhao, Zhou; Li, Zhao; Yang, Hongxia; Wu, Minghui; Ying, Jing [Interactive paths embedding for semantic proximity search on heterogeneous graphs; 2018c]: Interactive paths embedding for semantic proximity search on heterogeneous graphs, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 1860–1869, available at: http://doi.acm.org/10.1145/3219819.3219953.
Ma, Jianxin; Cui, Peng; Wang, Xiao; Zhu, Wenwu [Hierarchical taxonomy aware network embedding; 2018]: Hierarchical taxonomy aware network embedding, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 1920–1929, available at: http://doi.acm.org/10.1145/3219819.3220062.
Shi, Yu; Zhu, Qi; Guo, Fang; Zhang, Chao; Han, Jiawei [Easing embedding learning by comprehensive transcription of heterogeneous information networks; 2018]: Easing embedding learning by comprehensive transcription of heterogeneous information networks, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 2190–2199, available at: http://doi.acm.org/10.1145/3219819.3220006.
Tu, Ke; Cui, Peng; Wang, Xiao; Yu, Philip S.; Zhu, Wenwu [Deep recursive network embedding with regular equivalence; 2018]: Deep recursive network embedding with regular equivalence, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 2357–2366, available at: http://doi.acm.org/10.1145/3219819.3220068.
Wang, Jizhe; Huang, Pipei; Zhao, Huan; Zhang, Zhibo; Zhao, Binqiang; Lee, Dik Lun [Billion-scale commodity embedding for e-commerce recommendation in alibaba; 2018]: Billion-scale commodity embedding for e-commerce recommendation in alibaba, in: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, KDD ’18. New York, NY, USA: ACM, pp. 839–848, available at: http://doi.acm.org/10.1145/3219819.3219869.