게임데이터 기하분포로 분석하기 기하분포는 몇 번째에 가장 처음으로 성공할 확률이 몇인지 알수 있는 분포 기하분포를 이용하면 게임밸런스를 조절하는 근거가 됨

library(dplyr)
library(ggplot2)
library(ggthemes)
var.population <- read.csv('example_population_f.csv')  
head(var.population)

step 2 : 불필요한 첫열 삭제

var.population <- subset(var.population, select = -X)
#var.population <- var.population[,-1]
head(var.population)

step 3 : 남여 비율을 문자로 나태내는 변수 추가
var.pop <- mutate(var.pop)

var.population <- mutate(var.population,
                         rate = ifelse(SexRatio < 1, "여자비율높음",
                         ifelse(SexRatio > 1, "남자비율높음",
                         "남녀비율같음")))

head(var.population)

step4 : 새로운 변수를 순서형 변수로 변환

var.population$rate <- factor(var.population$rate)
var.population$rate <- order(var.population$rate ,
                             c('여자비율높음','남자비율높음','남녀비율같음'))

step5 : 경기도 데이터만 가지는 var.pop_kk 생성후 geom_bar()그래프 그리기

var.pop_kk <- filter(var.population, Provinces == "경기도")
ggplot(
  var.pop_kk, aes(x=City, y=(SexRatio-1),fill=rate)
)+ geom_bar(stat = 'identity',position = 'identity')+
  theme_wsj()
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQotLS0NCnRpdGxlOiAiUiBOb3RlYm9vayINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCuqyjOyehOuNsOydtO2EsCDquLDtlZjrtoTtj6zroZwg67aE7ISd7ZWY6riwDQrquLDtlZjrtoTtj6zripQg66qHIOuyiOynuOyXkCDqsIDsnqUg7LKY7J2M7Jy866GcIOyEseqzte2VoCDtmZXrpaDsnbQg66qH7J247KeAIOyVjOyImCDsnojripQg67aE7Y+sDQrquLDtlZjrtoTtj6zrpbwg7J207Jqp7ZWY66m0IOqyjOyehOuwuOufsOyKpOulvCDsobDsoIjtlZjripQg6re86rGw6rCAIOuQqCANCg0KYGBge3J9DQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShnZ3RoZW1lcykNCnZhci5wb3B1bGF0aW9uIDwtIHJlYWQuY3N2KCdleGFtcGxlX3BvcHVsYXRpb25fZi5jc3YnKSAgDQpoZWFkKHZhci5wb3B1bGF0aW9uKQ0KDQpgYGANCg0KDQpzdGVwIDIgOiDrtojtlYTsmpTtlZwg7LKr7Je0IOyCreygnCAgDQoNCmBgYHtyfQ0KdmFyLnBvcHVsYXRpb24gPC0gc3Vic2V0KHZhci5wb3B1bGF0aW9uLCBzZWxlY3QgPSAtWCkNCiN2YXIucG9wdWxhdGlvbiA8LSB2YXIucG9wdWxhdGlvblssLTFdDQpoZWFkKHZhci5wb3B1bGF0aW9uKQ0KYGBgDQoNCnN0ZXAgMyA6IOuCqOyXrCDruYTsnKjsnYQg66y47J6Q66GcIOuCmO2DnOuCtOuKlCDrs4DsiJgg7LaU6rCAICANCnZhci5wb3AgIDwtICBtdXRhdGUodmFyLnBvcCkNCmBgYHtyfQ0KdmFyLnBvcHVsYXRpb24gPC0gbXV0YXRlKHZhci5wb3B1bGF0aW9uLA0KICAgICAgICAgICAgICAgICAgICAgICAgIHJhdGUgPSBpZmVsc2UoU2V4UmF0aW8gPCAxLCAi7Jes7J6Q67mE7Jyo64aS7J2MIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICBpZmVsc2UoU2V4UmF0aW8gPiAxLCAi64Ko7J6Q67mE7Jyo64aS7J2MIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAi64Ko64WA67mE7Jyo6rCZ7J2MIikpKQ0KDQpoZWFkKHZhci5wb3B1bGF0aW9uKQ0KYGBgDQoNCnN0ZXA0IDog7IOI66Gc7Jq0IOuzgOyImOulvCDsiJzshJztmJUg67OA7IiY66GcIOuzgO2ZmA0KDQpgYGB7cn0NCnZhci5wb3B1bGF0aW9uJHJhdGUgPC0gZmFjdG9yKHZhci5wb3B1bGF0aW9uJHJhdGUpDQp2YXIucG9wdWxhdGlvbiRyYXRlIDwtIG9yZGVyKHZhci5wb3B1bGF0aW9uJHJhdGUgLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjKCfsl6zsnpDruYTsnKjrhpLsnYwnLCfrgqjsnpDruYTsnKjrhpLsnYwnLCfrgqjrhYDruYTsnKjqsJnsnYwnKSkNCmBgYA0KDQpzdGVwNSA6IOqyveq4sOuPhCDrjbDsnbTthLDrp4wg6rCA7KeA64qUIHZhci5wb3Bfa2sg7IOd7ISx7ZuEIGdlb21fYmFyKCnqt7jrnpjtlIQg6re466as6riwDQoNCmBgYHtyfQ0KdmFyLnBvcF9rayA8LSBmaWx0ZXIodmFyLnBvcHVsYXRpb24sIFByb3ZpbmNlcyA9PSAi6rK96riw64+EIikNCmdncGxvdCgNCiAgdmFyLnBvcF9raywgYWVzKHg9Q2l0eSwgeT0oU2V4UmF0aW8tMSksZmlsbD1yYXRlKQ0KKSsgZ2VvbV9iYXIoc3RhdCA9ICdpZGVudGl0eScscG9zaXRpb24gPSAnaWRlbnRpdHknKSsNCiAgdGhlbWVfd3NqKCkNCg0KDQpgYGANCg0K