# [2] 연도마다 오픈하는 커피숍과 폐업하는 커피숍의 수를 도수분포표와# 그래프로 표현하시오
# http://www.data.go.kr##
step 1. data loading
ver.coffee <- read.csv('https://www.dropbox.com/s/db2yo6l7kxzasl3/example_coffee.csv?dl=1')
step 2. installpackages : data.table, ggplot2
library(ggplot2)
挼㸶搼㸰Ű挼㸱昼㸶 愼㸱愼㹥ggplot2愼㸱愼㹦戼㸴挼㸲 R 戼㸹昼㸶挼㸰昼㹣 3.5.1戼㹦愼㸱戼㹣愼㹤 挼㸰ۼ戼㹡戼㸵Ǿ昼㹡戼㹤挼㸰戼㸴ϴ搼㸹Need help? Try Stackoverflow: https://stackoverflow.com/tags/ggplot2.
step 3. structure
str(ver.coffee)
step 4. 불필요한 변수 삭제 :
-adress, -adressBystreet, -dateOfclosure, -startdateOfcessation, -duedateOfcessation, dateOfreOpen
ver.coffee <- subset(ver.coffee, select = -c(adress, adressBystreet, dateOfclosure,
startdateOfcessation,duedateOfcessation,
dateOfreOpen))
head(ver.coffee)
step 5. 최초의 커피숍 찾기
range(ver.coffee$yearOfStart,na.rm = T)
ver.temp <- subset(ver.coffee, ver.coffee$yearOfStart == 1964)
ver.temp
ver.firsy_coffee <- subset(ver.coffee, ver.coffee$dateOflicensing == 19640929)
ver.firsy_coffee
step 6. 해마다 오픈한 커피숍 갯수 찾기
ver.open <- table(ver.coffee$yearOfStart)
step 7. 6번결과를 막대 그래프로 그리기
ggplot(ver.open, data = ver.coffee, mapping= aes(x = yearOfStart))+ geom_bar(binwidth=1)
`geom_bar()` no longer has a `binwidth` parameter. Please use `geom_histogram()` instead.

qplot(ver.coffee$yearOfStart, data = ver.coffee, geom = "bar")

step 8. 영업상태 및 연도에 따른 분할표 만들기
ver.satate <- table(ver.coffee$stateOfbusiness,ver.coffee$yearOfStart)
step 9. 이상치제거를 위해 1997년도 이상 데이터만 저장 (outlier 추출)
which(colnames(ver.satate)==1997)
##which() 함수는 True 값이 있는 위치를 알려줌
##예를 들어 1997 값을 체크했을때 나오는 값은해당연도가 시작한 후
##몇번째 index 값을 갖는지 알려줌
which.max(colnames(ver.satate))
##8번 리턴값의 최대값을 보여줌
ver.satate_2 <- ver.satate[,c(30:48)]
## a부터 b까지만 다시 table로 편집
step 10. 폐업과 운영하는 샵의 비율
ver.satate_3 <- prop.table(ver.satate_2,margin = 2)
head(ver.satate_3)
step 11. 차트로 표현할 마지막 데이터 프레임 생성
new.coffee <- data.frame(colnames(ver.satate_2),ver.satate_2[1,], ver.satate_2[2,],
ver.satate_3[1,], ver.satate_3[2,])
step 12.새로운 데이터 프레임에 가독성있는 이름을 부여
colnames(new.coffee) <- c('Year','Open','Close','개업비율','패업비율')
new.coffee

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCiMgWzJdIOyXsOuPhOuniOuLpCDsmKTtlIjtlZjripQg7Luk7ZS87IiN6rO8IO2PkOyXhe2VmOuKlCDsu6TtlLzsiI3snZgg7IiY66W8IOuPhOyImOu2hO2PrO2RnOyZgCMg6re4656Y7ZSE66GcIO2RnO2YhO2VmOyLnOyYpA0KIyBodHRwOi8vd3d3LmRhdGEuZ28ua3IjIw0KYGBgDQoNCiMjI3N0ZXAgMS4gZGF0YSBsb2FkaW5nDQpgYGB7cn0NCnZlci5jb2ZmZWUgPC0gcmVhZC5jc3YoJ2h0dHBzOi8vd3d3LmRyb3Bib3guY29tL3MvZGIyeW82bDdreHphc2wzL2V4YW1wbGVfY29mZmVlLmNzdj9kbD0xJykNCmBgYA0KDQoNCiMjIyBzdGVwIDIuIGluc3RhbGxwYWNrYWdlcyA6IGRhdGEudGFibGUsIGdncGxvdDINCg0KYGBge3J9DQpsaWJyYXJ5KGRhdGEudGFibGUpDQpsaWJyYXJ5KGdncGxvdDIpDQoNCmBgYA0KDQojIyMgc3RlcCAzLiBzdHJ1Y3R1cmUNCg0KYGBge3J9DQpzdHIodmVyLmNvZmZlZSkNCmBgYA0KDQojIyMgc3RlcCA0LiDrtojtlYTsmpTtlZwg67OA7IiYIOyCreygnCA6IA0KIyMjIC1hZHJlc3MsIC1hZHJlc3NCeXN0cmVldCwgLWRhdGVPZmNsb3N1cmUsIC1zdGFydGRhdGVPZmNlc3NhdGlvbiwgLWR1ZWRhdGVPZmNlc3NhdGlvbiwgZGF0ZU9mcmVPcGVuICAgDQoNCmBgYHtyfQ0KdmVyLmNvZmZlZSA8LSBzdWJzZXQodmVyLmNvZmZlZSwgc2VsZWN0ID0gLWMoYWRyZXNzLCBhZHJlc3NCeXN0cmVldCwgZGF0ZU9mY2xvc3VyZSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN0YXJ0ZGF0ZU9mY2Vzc2F0aW9uLGR1ZWRhdGVPZmNlc3NhdGlvbiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRhdGVPZnJlT3BlbikpDQpoZWFkKHZlci5jb2ZmZWUpDQpgYGANCg0KIyMjIHN0ZXAgNS4g7LWc7LSI7J2YIOy7pO2UvOyIjSDssL7quLANCg0KYGBge3J9DQpyYW5nZSh2ZXIuY29mZmVlJHllYXJPZlN0YXJ0LG5hLnJtID0gVCkNCnZlci50ZW1wIDwtIHN1YnNldCh2ZXIuY29mZmVlLCB2ZXIuY29mZmVlJHllYXJPZlN0YXJ0ID09IDE5NjQpDQp2ZXIudGVtcA0KdmVyLmZpcnN5X2NvZmZlZSA8LSBzdWJzZXQodmVyLmNvZmZlZSwgdmVyLmNvZmZlZSRkYXRlT2ZsaWNlbnNpbmcgPT0gMTk2NDA5MjkpDQp2ZXIuZmlyc3lfY29mZmVlDQpgYGANCg0KIyMjIHN0ZXAgNi4g7ZW066eI64ukIOyYpO2UiO2VnCDsu6TtlLzsiI0g6rCv7IiYIOywvuq4sA0KDQpgYGB7cn0NCnZlci5vcGVuIDwtIHRhYmxlKHZlci5jb2ZmZWUkeWVhck9mU3RhcnQpDQoNCmBgYA0KDQojIyMgc3RlcCA3LiA267KI6rKw6rO866W8IOunieuMgCDqt7jrnpjtlITroZwg6re466as6riwDQpgYGB7cn0NCmdncGxvdCh2ZXIub3BlbiwgZGF0YSA9IHZlci5jb2ZmZWUsIG1hcHBpbmc9IGFlcyh4ID0geWVhck9mU3RhcnQpKSsgZ2VvbV9iYXIoYmlud2lkdGg9MSkNCnFwbG90KHZlci5jb2ZmZWUkeWVhck9mU3RhcnQsIGRhdGEgPSB2ZXIuY29mZmVlLCBnZW9tID0gImJhciIpDQpgYGANCg0KIyMjc3RlcCA4LiDsmIHsl4Xsg4Htg5wg67CPIOyXsOuPhOyXkCDrlLDrpbgg67aE7ZWg7ZGcIOunjOuTpOq4sCANCmBgYHtyfQ0KdmVyLnNhdGF0ZSA8LSB0YWJsZSh2ZXIuY29mZmVlJHN0YXRlT2ZidXNpbmVzcyx2ZXIuY29mZmVlJHllYXJPZlN0YXJ0KQ0KDQpgYGANCg0KIyMjc3RlcCA5LiDsnbTsg4HsuZjsoJzqsbDrpbwg7JyE7ZW0IDE5OTfrhYTrj4Qg7J207IOBIOuNsOydtO2EsOunjCDsoIDsnqUgKG91dGxpZXIg7LaU7LacKQ0KYGBge3J9DQp3aGljaChjb2xuYW1lcyh2ZXIuc2F0YXRlKT09MTk5NykNCiMjd2hpY2goKSDtlajsiJjripQgVHJ1ZSDqsJLsnbQg7J6I64qUIOychOy5mOulvCDslYzroKTspIwgDQojI+yYiOulvCDrk6TslrQgMTk5NyDqsJLsnYQg7LK07YGs7ZaI7J2E65WMIOuCmOyYpOuKlCDqsJLsnYDtlbTri7nsl7Drj4TqsIAg7Iuc7J6R7ZWcIO2bhCANCiMj66qH67KI7Ke4IGluZGV4IOqwkuydhCDqsJbripTsp4Ag7JWM66Ck7KSMIA0Kd2hpY2gubWF4KGNvbG5hbWVzKHZlci5zYXRhdGUpKQ0KIyM467KIIOumrO2EtOqwkuydmCDstZzrjIDqsJLsnYQg67O07Jes7KSMIA0KdmVyLnNhdGF0ZV8yIDwtIHZlci5zYXRhdGVbLGMoMzA6NDgpXQ0KIyMgYeu2gO2EsCBi6rmM7KeA66eMIOuLpOyLnCAgdGFibGXroZwg7Y647KeRICANCg0KYGBgDQoNCiMjIyBzdGVwIDEwLiDtj5Dsl4Xqs7wg7Jq07JiB7ZWY64qUIOyDteydmCDruYTsnKgNCmBgYHtyfQ0KdmVyLnNhdGF0ZV8zIDwtIHByb3AudGFibGUodmVyLnNhdGF0ZV8yLG1hcmdpbiA9IDIpDQpoZWFkKHZlci5zYXRhdGVfMykNCmBgYA0KDQojIyNzdGVwIDExLiDssKjtirjroZwg7ZGc7ZiE7ZWgIOuniOyngOuniSDrjbDsnbTthLAg7ZSE66CI7J6EIOyDneyEsSANCmBgYHtyfQ0KbmV3LmNvZmZlZSA8LSBkYXRhLmZyYW1lKGNvbG5hbWVzKHZlci5zYXRhdGVfMiksdmVyLnNhdGF0ZV8yWzEsXSwgdmVyLnNhdGF0ZV8yWzIsXSwNCiAgICAgICAgICAgICAgICAgICAgICAgICB2ZXIuc2F0YXRlXzNbMSxdLCB2ZXIuc2F0YXRlXzNbMixdKQ0KYGBgDQoNCiMjI3N0ZXAgMTIu7IOI66Gc7Jq0IOuNsOydtO2EsCDtlITroIjsnoTsl5Ag6rCA64+F7ISx7J6I64qUIOydtOumhOydhCDrtoDsl6wgDQoNCmBgYHtyfQ0KY29sbmFtZXMobmV3LmNvZmZlZSkgPC0gYygnWWVhcicsJ09wZW4nLCdDbG9zZScsJ+qwnOyXheu5hOycqCcsJ+2MqOyXheu5hOycqCcpDQpuZXcuY29mZmVlDQpgYGANCg0KYGBge3J9DQoNCmdncGxvdChkYXRhID0gbmV3LmNvZmZlZSwgYWVzKHggPSAgZmFjdG9yKFllYXIpLCB5ID0gQ2xvc2UsIGdyb3VwPTEpKSsNCiAgICAgICAgIGdlb21fbGluZShjb2xvcj0nc3RlZWxibHVlJyxzaXplPTEpKw0KICAgICAgICAgZ2VvbV9wb2ludChjb2xvcj0nc3RlZWxibHVlJyxzaXplPTMpKw0KICAgICAgICAgZ2VvbV9saW5lKGFlcyh5PU9wZW4pLCBjb2xvcj0ndG9tYXRvMicsc2l6ZT0xKSsNCiAgICAgICAgIGdlb21fcG9pbnQoYWVzKHk9T3BlbiksIGNvbG9yPSdyZWQnLHNpemU9NikNCmBgYA0KDQo=