This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

# Review for Quiz 1: Example 1: 08-24-2018
# dplyr verbs: Filter
# dplyr is a package used for manipulating data
# Filter is used to get a subset of records from a dataset
# Load dplyr and gapminder
# If dplyr and/or gapminder are not installed, you must first install these packages
# gapminder is a database of economic indicators for countries available as a package in R
library (gapminder)
library(dplyr)
# Show the observations for 1997
# Write the dataset name (gapminder) followed by the pipe operators %>%
# Then, use filter to choose records that satisfy a condition
gapminder %>%
  filter(year == 1997)
#Y ou can combine multiple conditions using &
gapminder %>%
  filter(year == 1997 & country == "China")
# Review for Quiz 1: Example 2: 08-24-2018
# Loading data
# If you are using data in a csv file, you must first import it in R Studio
# Import Fee1.csv sent to you 
# Use head(Fee1) to view the first few records of the Fee1 table
head(Fee1)
Fee1 %>%
  filter(GC == 0)
# Review for Quiz 1: Example 3: 08-24-2018 
# You can store the results of filtering in another dataset
#First, view the Fee1 dataset. How many observations are there in this dataset?
Fee1
# Filter and store the results in FeeGC
FeeGC = Fee1 %>%
  filter(GC == 0)
# Data is stored in FeeGC.  Type FeeGC to view the results
FeeGC 

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tDQp0aXRsZTogIlJldmlldyBmb3IgUXVpeiAxOiBFeGFtcGxlczogRmlsdGVyOiAwOC0yNC0yMDE4Ig0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gDQoNClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDdHJsK1NoaWZ0K0VudGVyKi4gDQoNCmBgYHtyfQ0KDQojIFJldmlldyBmb3IgUXVpeiAxOiBFeGFtcGxlIDE6IDA4LTI0LTIwMTgNCiMgZHBseXIgdmVyYnM6IEZpbHRlcg0KIyBkcGx5ciBpcyBhIHBhY2thZ2UgdXNlZCBmb3IgbWFuaXB1bGF0aW5nIGRhdGENCiMgRmlsdGVyIGlzIHVzZWQgdG8gZ2V0IGEgc3Vic2V0IG9mIHJlY29yZHMgZnJvbSBhIGRhdGFzZXQNCg0KIyBMb2FkIGRwbHlyIGFuZCBnYXBtaW5kZXINCiMgSWYgZHBseXIgYW5kL29yIGdhcG1pbmRlciBhcmUgbm90IGluc3RhbGxlZCwgeW91IG11c3QgZmlyc3QgaW5zdGFsbCB0aGVzZSBwYWNrYWdlcw0KIyBnYXBtaW5kZXIgaXMgYSBkYXRhYmFzZSBvZiBlY29ub21pYyBpbmRpY2F0b3JzIGZvciBjb3VudHJpZXMgYXZhaWxhYmxlIGFzIGEgcGFja2FnZSBpbiBSDQoNCmxpYnJhcnkgKGdhcG1pbmRlcikNCmxpYnJhcnkoZHBseXIpDQoNCg0KIyBTaG93IHRoZSBvYnNlcnZhdGlvbnMgZm9yIDE5OTcNCiMgV3JpdGUgdGhlIGRhdGFzZXQgbmFtZSAoZ2FwbWluZGVyKSBmb2xsb3dlZCBieSB0aGUgcGlwZSBvcGVyYXRvcnMgJT4lDQojIFRoZW4sIHVzZSBmaWx0ZXIgdG8gY2hvb3NlIHJlY29yZHMgdGhhdCBzYXRpc2Z5IGEgY29uZGl0aW9uDQoNCmdhcG1pbmRlciAlPiUNCiAgZmlsdGVyKHllYXIgPT0gMTk5NykNCg0KIyBZb3UgY2FuIGNvbWJpbmUgbXVsdGlwbGUgY29uZGl0aW9ucyB1c2luZyAmDQpnYXBtaW5kZXIgJT4lDQogIGZpbHRlcih5ZWFyID09IDE5OTcgJiBjb3VudHJ5ID09ICJDaGluYSIpDQpgYGANCg0KYGBge3J9DQojIFJldmlldyBmb3IgUXVpeiAxOiBFeGFtcGxlIDI6IDA4LTI0LTIwMTgNCiMgTG9hZGluZyBkYXRhDQojIElmIHlvdSBhcmUgdXNpbmcgZGF0YSBpbiBhIGNzdiBmaWxlLCB5b3UgbXVzdCBmaXJzdCBpbXBvcnQgaXQgaW4gUiBTdHVkaW8NCiMgSW1wb3J0IEZlZTEuY3N2IHNlbnQgdG8geW91IA0KIyBVc2UgaGVhZChGZWUxKSB0byB2aWV3IHRoZSBmaXJzdCBmZXcgcmVjb3JkcyBvZiB0aGUgRmVlMSB0YWJsZQ0KaGVhZChGZWUxKQ0KRmVlMSAlPiUNCiAgZmlsdGVyKEdDID09IDApDQoNCg0KYGBgDQoNCmBgYHtyfQ0KIyBSZXZpZXcgZm9yIFF1aXogMTogRXhhbXBsZSAzOiAwOC0yNC0yMDE4IA0KIyBZb3UgY2FuIHN0b3JlIHRoZSByZXN1bHRzIG9mIGZpbHRlcmluZyBpbiBhbm90aGVyIGRhdGFzZXQNCiNGaXJzdCwgdmlldyB0aGUgRmVlMSBkYXRhc2V0LiBIb3cgbWFueSBvYnNlcnZhdGlvbnMgYXJlIHRoZXJlIGluIHRoaXMgZGF0YXNldD8NCkZlZTENCiMgRmlsdGVyIGFuZCBzdG9yZSB0aGUgcmVzdWx0cyBpbiBGZWVHQw0KRmVlR0MgPSBGZWUxICU+JQ0KICBmaWx0ZXIoR0MgPT0gMCkNCiMgRGF0YSBpcyBzdG9yZWQgaW4gRmVlR0MuICBUeXBlIEZlZUdDIHRvIHZpZXcgdGhlIHJlc3VsdHMNCkZlZUdDIA0KYGBgDQoNCkFkZCBhIG5ldyBjaHVuayBieSBjbGlja2luZyB0aGUgKkluc2VydCBDaHVuayogYnV0dG9uIG9uIHRoZSB0b29sYmFyIG9yIGJ5IHByZXNzaW5nICpDdHJsK0FsdCtJKi4NCg0KV2hlbiB5b3Ugc2F2ZSB0aGUgbm90ZWJvb2ssIGFuIEhUTUwgZmlsZSBjb250YWluaW5nIHRoZSBjb2RlIGFuZCBvdXRwdXQgd2lsbCBiZSBzYXZlZCBhbG9uZ3NpZGUgaXQgKGNsaWNrIHRoZSAqUHJldmlldyogYnV0dG9uIG9yIHByZXNzICpDdHJsK1NoaWZ0K0sqIHRvIHByZXZpZXcgdGhlIEhUTUwgZmlsZSkuDQoNClRoZSBwcmV2aWV3IHNob3dzIHlvdSBhIHJlbmRlcmVkIEhUTUwgY29weSBvZiB0aGUgY29udGVudHMgb2YgdGhlIGVkaXRvci4gQ29uc2VxdWVudGx5LCB1bmxpa2UgKktuaXQqLCAqUHJldmlldyogZG9lcyBub3QgcnVuIGFueSBSIGNvZGUgY2h1bmtzLiBJbnN0ZWFkLCB0aGUgb3V0cHV0IG9mIHRoZSBjaHVuayB3aGVuIGl0IHdhcyBsYXN0IHJ1biBpbiB0aGUgZWRpdG9yIGlzIGRpc3BsYXllZC4NCg==