library(RCurl)
library(XML)
library(dplyr)
library(tidyr)
library(RColorBrewer)
library(ggplot2)
web<- "https://www.bls.gov/opub/ted/2018/3-point-8-percent-of-workers-were-contingent-in-may-2017.htm"
webcode <- getURL(web)
webhtml<- htmlParse(webcode ,asText = T)
tables<- readHTMLTable(webhtml , header = T ,colClasses = c("character" , "numeric"))
NAs introduced by coercion
tables<- tables[[1]]
talbes<- tbl_df(tables)
tables[1,2]<- 4.9
tables
tables$Year<- paste("01" , tables$Year , sep = '-')
Sys.setlocale("LC_TIME" , "us")
[1] "English_United States.1252"
tables$Year<- as.Date(tables$Year , "%d-%b %Y")
tables
mycolors<- brewer.pal(6, "Set3")
ggplot(tables, aes(as.factor(Year) , `Percent of total employed`)) +
geom_bar(stat = "identity" , fill = mycolors , col = "darkgrey" , alpha=0.75) +
theme_classic() +
labs(title = 'Contingent workers as a percent of total employed' , x= "Year " , y = "Percent of total employed \n(%)") +
scale_y_continuous(expand= c(0,0)) +
theme(line = element_line(size = 1))

LS0tDQp0aXRsZTogImdncGxvdDIgcHJhY3RpY2UgMTAgYmFycGxvdCINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpsaWJyYXJ5KFJDdXJsKQ0KbGlicmFyeShYTUwpDQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeSh0aWR5cikNCmxpYnJhcnkoUkNvbG9yQnJld2VyKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KYGBgDQoNCmBgYHtyfQ0Kd2ViPC0gImh0dHBzOi8vd3d3LmJscy5nb3Yvb3B1Yi90ZWQvMjAxOC8zLXBvaW50LTgtcGVyY2VudC1vZi13b3JrZXJzLXdlcmUtY29udGluZ2VudC1pbi1tYXktMjAxNy5odG0iDQp3ZWJjb2RlIDwtIGdldFVSTCh3ZWIpDQp3ZWJodG1sPC0gaHRtbFBhcnNlKHdlYmNvZGUgLGFzVGV4dCA9IFQpDQp0YWJsZXM8LSByZWFkSFRNTFRhYmxlKHdlYmh0bWwgLCBoZWFkZXIgPSAgVCAsY29sQ2xhc3NlcyA9IGMoImNoYXJhY3RlciIgLCAibnVtZXJpYyIpKQ0KdGFibGVzPC0gdGFibGVzW1sxXV0NCnRhbGJlczwtIHRibF9kZih0YWJsZXMpDQp0YWJsZXNbMSwyXTwtIDQuOQ0KdGFibGVzDQpgYGANCg0KDQpgYGB7cn0NCnRhYmxlcyRZZWFyPC0gcGFzdGUoIjAxIiAsIHRhYmxlcyRZZWFyICwgc2VwID0gJy0nKQ0KU3lzLnNldGxvY2FsZSgiTENfVElNRSIgLCAidXMiKQ0KdGFibGVzJFllYXI8LSBhcy5EYXRlKHRhYmxlcyRZZWFyICwgIiVkLSViICVZIikNCnRhYmxlcw0KYGBgDQoNCmBgYHtyfQ0KbXljb2xvcnM8LSBicmV3ZXIucGFsKDYsICJTZXQzIikNCmdncGxvdCh0YWJsZXMsIGFlcyhhcy5mYWN0b3IoWWVhcikgLCBgUGVyY2VudCBvZiB0b3RhbCBlbXBsb3llZGApKSArIA0KICBnZW9tX2JhcihzdGF0ID0gImlkZW50aXR5IiAsIGZpbGwgPSBteWNvbG9ycyAsIGNvbCA9ICJkYXJrZ3JleSIgLCBhbHBoYT0wLjc1KSArIA0KICB0aGVtZV9jbGFzc2ljKCkgKyANCiAgbGFicyh0aXRsZSA9ICdDb250aW5nZW50IHdvcmtlcnMgYXMgYSBwZXJjZW50IG9mIHRvdGFsIGVtcGxveWVkJyAsIHg9ICJZZWFyICIgLCB5ID0gIlBlcmNlbnQgb2YgdG90YWwgZW1wbG95ZWQgXG4oJSkiKSArIA0KICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kPSBjKDAsMCkpICArIA0KICB0aGVtZShsaW5lID0gZWxlbWVudF9saW5lKHNpemUgPSAxKSkNCmBgYA0KDQo=