library(XML)
library(RCurl)
library(tidyr)
library(dplyr)
library(ggplot2)
web<- "https://www.bls.gov/opub/ted/2018/55-percent-of-16-to-24-year-olds-employed-in-july-2018.htm"
webcode<- getURL(web)
webhtml<- htmlParse(webcode, asText = T)
tables <- readHTMLTable(webhtml , header = T , colClasses = c("numeric" , "numeric","numeric","numeric","numeric","numeric","numeric","numeric"))
NAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercion
tables<- tables[[1]]
tables<- tbl_df(tables)
tables
tables[1,2]<- 58.3
tables[1,3]<- 60.1
tables[1,4]<- 56.6
tables[1,5]<- 62.6
tables[1,6]<- 41.7
tables[1,7]<- 43.8
tables[1,8]<- 53.4
tables
tables_sex<- tables[,c(1,2,3,4)]
tables_race<- tables[,c(1,2,5:8)]
tables_sex
tables_race
tables_sex<- gather(tables_sex , key = "Types" , value = "Value" , -1)
tables_race<- gather(tables_race , key = "Types" , value = "Value" , -1)
tables_sex
tables_race
p_sex<- ggplot(tables_sex,aes(x= Year , y = Value , col = Types))
Warning message:
In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale
p_race<- ggplot(tables_race,aes(x= Year , y = Value , col = Types))
p_sex + geom_point() + theme_classic() + scale_y_continuous(expand = c(0,0), limits = c(30,70)) + labs(title= "Employment–population ratios of 16- to 24-year-olds in July, 2003–18,\n not seasonally adjusted") + geom_smooth(se = F)

p_race + geom_point() + theme_classic() + scale_y_continuous(expand = c(0,0), limits = c(30,70))+ labs(title= "Employment–population ratios of 16- to 24-year-olds in July, 2003–18,\n not seasonally adjusted") + geom_smooth(se = F)

LS0tDQp0aXRsZTogImdncGxvdDIgcHJhY3RpY2UgOSBsaW5lcGxvdCINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpsaWJyYXJ5KFhNTCkNCmxpYnJhcnkoUkN1cmwpDQpsaWJyYXJ5KHRpZHlyKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoZ2dwbG90MikNCg0KYGBgDQoNCmBgYHtyfQ0Kd2ViPC0gImh0dHBzOi8vd3d3LmJscy5nb3Yvb3B1Yi90ZWQvMjAxOC81NS1wZXJjZW50LW9mLTE2LXRvLTI0LXllYXItb2xkcy1lbXBsb3llZC1pbi1qdWx5LTIwMTguaHRtIg0Kd2ViY29kZTwtIGdldFVSTCh3ZWIpDQp3ZWJodG1sPC0gaHRtbFBhcnNlKHdlYmNvZGUsIGFzVGV4dCA9IFQpDQp0YWJsZXMgPC0gcmVhZEhUTUxUYWJsZSh3ZWJodG1sICwgaGVhZGVyID0gVCAsIGNvbENsYXNzZXMgPSBjKCJudW1lcmljIiAsICJudW1lcmljIiwibnVtZXJpYyIsIm51bWVyaWMiLCJudW1lcmljIiwibnVtZXJpYyIsIm51bWVyaWMiLCJudW1lcmljIikpDQp0YWJsZXM8LSB0YWJsZXNbWzFdXQ0KdGFibGVzPC0gdGJsX2RmKHRhYmxlcykNCnRhYmxlcw0KYGBgDQoNCmBgYHtyfQ0KdGFibGVzWzEsMl08LSA1OC4zDQp0YWJsZXNbMSwzXTwtIDYwLjENCnRhYmxlc1sxLDRdPC0gNTYuNg0KdGFibGVzWzEsNV08LSA2Mi42DQp0YWJsZXNbMSw2XTwtIDQxLjcNCnRhYmxlc1sxLDddPC0gNDMuOA0KdGFibGVzWzEsOF08LSA1My40DQp0YWJsZXMNCmBgYA0KDQpgYGB7cn0NCnRhYmxlc19zZXg8LSB0YWJsZXNbLGMoMSwyLDMsNCldDQp0YWJsZXNfcmFjZTwtIHRhYmxlc1ssYygxLDIsNTo4KV0NCnRhYmxlc19zZXgNCnRhYmxlc19yYWNlDQpgYGANCg0KYGBge3J9DQp0YWJsZXNfc2V4PC0gZ2F0aGVyKHRhYmxlc19zZXggLCBrZXkgPSAiVHlwZXMiICwgdmFsdWUgPSAiVmFsdWUiICwgLTEpDQp0YWJsZXNfcmFjZTwtIGdhdGhlcih0YWJsZXNfcmFjZSAsIGtleSA9ICJUeXBlcyIgLCB2YWx1ZSA9ICJWYWx1ZSIgLCAtMSkNCnRhYmxlc19zZXgNCnRhYmxlc19yYWNlDQpgYGANCg0KDQpgYGB7cn0NCnBfc2V4PC0gZ2dwbG90KHRhYmxlc19zZXgsYWVzKHg9IFllYXIgLCB5ID0gVmFsdWUgLCBjb2wgPSBUeXBlcykpDQpwX3JhY2U8LSBnZ3Bsb3QodGFibGVzX3JhY2UsYWVzKHg9IFllYXIgLCB5ID0gVmFsdWUgLCBjb2wgPSBUeXBlcykpDQpwX3NleCArIGdlb21fcG9pbnQoKSArIHRoZW1lX2NsYXNzaWMoKSArIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBjKDAsMCksIGxpbWl0cyA9IGMoMzAsNzApKSArIGxhYnModGl0bGU9ICJFbXBsb3ltZW504oCTcG9wdWxhdGlvbiByYXRpb3Mgb2YgMTYtIHRvIDI0LXllYXItb2xkcyBpbiBKdWx5LCAyMDAz4oCTMTgsXG4gbm90IHNlYXNvbmFsbHkgYWRqdXN0ZWQiKSArIGdlb21fc21vb3RoKHNlID0gRikNCnBfcmFjZSArIGdlb21fcG9pbnQoKSArIHRoZW1lX2NsYXNzaWMoKSArIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBjKDAsMCksIGxpbWl0cyA9IGMoMzAsNzApKSsgbGFicyh0aXRsZT0gIkVtcGxveW1lbnTigJNwb3B1bGF0aW9uIHJhdGlvcyBvZiAxNi0gdG8gMjQteWVhci1vbGRzIGluIEp1bHksIDIwMDPigJMxOCxcbiBub3Qgc2Vhc29uYWxseSBhZGp1c3RlZCIpICsgZ2VvbV9zbW9vdGgoc2UgPSBGKQ0KYGBgDQoNCg==