Compare continous measure to binary measure
binary_gender <- read_csv("gender_grammar.csv") %>%
select(language_name, wikipedia_grammar_type)
binary_gender[binary_gender$language_name == "spanish; castilian", "language_name"] <- "spanish"
binary_gender[binary_gender$language_name == "dutch; flemish", "language_name"] <- "dutch"
continuous_gender <- read_csv("continuous_gender.csv")
all_gender <- left_join(continuous_gender,
binary_gender, by = c("language" = "language_name"))
Compare continous gender measure to behavioral measure
behavioral <- read_csv("/Users/mollylewis/Documents/research/Projects/1_in_progress/IATLANG/exploratory_analyses/7_age_controls/by_language_df.csv") %>%
mutate(language_name = tolower(language_name)) %>%
select(language_name, es_behavioral_iat_resid_simple, es_behavioral_explicit_resid_simple, ggi, wps) %>%
rename(language = language_name)
full_df <- full_join(behavioral, all_gender) %>%
data.frame()
ggplot(full_df , aes(y = es_behavioral_iat_resid_simple, x = num_dif_trans)) +
geom_label(aes(label= language)) +
geom_smooth(method = "lm") +
theme_classic()
binary_df <- full_df %>%
mutate(empirical_binary = ifelse(num_dif_trans > 0, "gendered", "not_gendered")) %>%
filter(!is.na(num_dif_trans),
!is.na(es_behavioral_iat_resid_simple))
count(binary_df, empirical_binary, wikipedia_grammar_type) %>%
kable()
| empirical_binary | wikipedia_grammar_type | n |
|---|---|---|
| gendered | CN | 2 |
| gendered | MF | 5 |
| gendered | MFN | 3 |
| not_gendered | CN | 1 |
| not_gendered | MFN | 1 |
| not_gendered | none | 9 |
t.test(binary_df[binary_df$empirical_binary == "gendered", "es_behavioral_iat_resid_simple"],
binary_df[binary_df$empirical_binary != "gendered", "es_behavioral_iat_resid_simple"],
paired = F)
##
## Welch Two Sample t-test
##
## data: binary_df[binary_df$empirical_binary == "gendered", "es_behavioral_iat_resid_simple"] and binary_df[binary_df$empirical_binary != "gendered", "es_behavioral_iat_resid_simple"]
## t = 2.6408, df = 18.908, p-value = 0.01616
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.004836846 0.041860433
## sample estimates:
## mean of x mean of y
## 0.007512373 -0.015836267
binary_df %>%
group_by(empirical_binary) %>%
multi_boot_standard(col = "es_behavioral_iat_resid_simple",
na.rm = T) %>%
ggplot(aes(x = empirical_binary, y = mean)) +
ylab("age-residualized behavioral IAT") +
geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper))+
theme_classic()
binary_df %>%
group_by(empirical_binary) %>%
multi_boot_standard(col = "ggi",
na.rm = T) %>%
ggplot(aes(x = empirical_binary, y = mean)) +
ylab("ggi") +
geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper))+
theme_classic()
t.test(binary_df[binary_df$empirical_binary == "gendered", "es_behavioral_explicit_resid_simple"],
binary_df[binary_df$empirical_binary != "gendered", "es_behavioral_explicit_resid_simple"],
paired = F)
##
## Welch Two Sample t-test
##
## data: binary_df[binary_df$empirical_binary == "gendered", "es_behavioral_explicit_resid_simple"] and binary_df[binary_df$empirical_binary != "gendered", "es_behavioral_explicit_resid_simple"]
## t = 2.3847, df = 18.816, p-value = 0.02778
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.01683944 0.25980743
## sample estimates:
## mean of x mean of y
## 0.05642592 -0.08189752
binary_df %>%
group_by(empirical_binary) %>%
multi_boot_standard(col = "es_behavioral_explicit_resid_simple",
na.rm = T) %>%
ggplot(aes(x = empirical_binary, y = mean)) +
ylab("age-residualized behavioral explicit") +
geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper))+
theme_classic()