---
title: "Final Projetc ANLY512"
author: Nikhil Chate
output:
flexdashboard::flex_dashboard:
orientation: columns
storyboard: true
source_code: embed
---
```{r setup, include=FALSE}
library(flexdashboard)
library(lubridate)
library(tidyverse)
library(plotly)
CC<- read.csv("Chase5036_Activity_20180818.CSV")
CC$Trans_Date<- mdy(CC$Trans.Date)
CC$Post_Date<- mdy(CC$Post.Date)
```
###Which are most frequent type of charges on the credit card?
```{r}
ggplot(data=CC, mapping=aes(x=Trans_Date, y=Amount,color=Type))+
geom_point(size=rel(2))+
xlab("Transaction Date")+
ylab("Amount in Dollers")+
theme(plot.background = element_rect(fill='lightgreen'),panel.background = element_rect(fill = "white",colour = "blue",size = 2, linetype = "solid"),
panel.grid = element_blank(), plot.title = element_text(size = rel(2)),
axis.text = element_text(colour = "blue"), axis.title.y = element_text(size = rel(1.5)),axis.title.x = element_text(size = rel(1.5)),
legend.position = "bottom",legend.key = element_rect(fill = "white", colour = "black"))+
labs(title="Summary of type of transaction", caption="negative values are sales")
```
###Which is the most frequent charge on Credit Card?
```{r}
sale<- filter(CC,Type=="Sale")
sale1<- transform(sale, freq.loc = ave(seq(nrow(sale)), Description, FUN=length))
ggplot(filter(sale1,freq.loc >=5),mapping=aes(x=Description,fill=Description))+
geom_bar(show.legend = FALSE,width = 1)+
labs(x = NULL, y = NULL)+
theme(plot.background = element_rect(fill='lightgreen'),panel.background = element_rect(fill = "white",colour = "blue",size = 2, linetype = "solid"),
panel.grid = element_blank(), plot.title = element_text(size = rel(2)),
axis.text = element_text(colour = "blue"),aspect.ratio = 1)+
labs(title="Top 5 Categories of Sale by count")+
coord_polar()
```
###Which is the highest charge on Credit Card?
```{r}
doller<- sale1 %>% group_by(Description,freq.loc) %>%
summarise(Amount=sum(Amount)) %>%
arrange((Amount))
doller = doller[1:5,]
p <- doller %>%
group_by(Description,Amount) %>%
summarise(Doller=sum((-1)*Amount)) %>%
plot_ly(labels = ~Description, values = ~Doller) %>%
add_pie(hole = 0.6) %>%
layout(title = "Top Charges by doller Amount", showlegend = F,
xaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE),
yaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE))
p
```
###Comparision of highest charge and most frequent charge(Doller)?
```{r}
doller = doller[1:5,]
Count =filter(sale1,freq.loc >=5)
Count =Count[1:5,]
ggplot(data = doller) +
geom_point(mapping = aes(x = Amount, y =freq.loc), color="red", size=4) +
xlab("Amount in Dollers")+
ylab("Charge Frequency")+
theme(panel.background = element_rect(fill = "lightblue"), axis.text = element_text(colour = "blue"),
axis.title.y = element_text(size = rel(1.5)),axis.title.x = element_text(size = rel(1.5)))+
labs(title="Doller vs frequency of Top 5 Doller",caption="negative values are sales")+
facet_wrap(~Description , nrow = 2)
```
###Comparision of highest charge and most frequent charge(Count)?
```{r}
ggplot(data = Count) +
xlab("Amount in Dollers")+
ylab("Charge Frequency")+
geom_point(mapping = aes(x = Amount, y =freq.loc), color="red", size=4) +
theme(panel.background = element_rect(fill = "lightblue"), axis.text = element_text(colour = "blue"),
axis.title.y = element_text(size = rel(1.5)),axis.title.x = element_text(size = rel(1.5)))+
labs(title="Doller vs frequency of Top 5 Count",caption="negative values are sales")+
facet_wrap(~Description , nrow = 2)
```