【交易資料彙整】
- Z:原始POS的交易紀錄,以商品為單位的單筆交易
- X:合併同一個顧客在同一天的交易紀錄
- 視每位顧客一天最多只會來消費一次,仍有日期變數(row)
- A:以顧客ID作為基本單位(row)的交易資料
- 同一顧客在期間內所有的消費項目(column)整併:有買該商品就計數,並去除時間的變數
- 此資料裡面有目標變數Y=0/1
- A2:2月份有來購買顧客資料
【準備資料】
- 將2月往前推一期,製作預測2月是否會來購買的模型
- 分割資料用Ratio(TR:TS=7:3)
- 製作新變數要在切割資料之前
【建立模型】
- 迴歸模型通常是最不準但唯一可以得知x與y的關係(係數)的模型
- 決策樹可以做類別模型,也可以做連續性模型
- 資料量大時準確性一般比迴歸好,資料小時則看不出太大的差異
- 隨機森林如果資料數量不多,效果其實不太好;反之,數量愈大的資料愈適合給隨機森林做,因其準確度很高
- 只要是監督式學習的模型都可以做交叉驗證,提高準確度
- 當然也可以做組合模型,加強模型的預測力
- 不是相關性愈高的兩個模型相加就最好,有時候差異很大的模型(敏感度跟明確度都是1的極端分布)反而可以互補預測對方的弱點
【製作變數、改進模型】
- 製作新變數: 從商品資料去找具有商業價值的解釋變量,找出顧客屬性分群、商品熱門與滯銷、區分明星商品與賠本商品、熱銷與滯銷地區等等
- 改進模型:
- 嘗試各種不同的模型方法
- 做交叉驗證進行參數調教
有兩個含意:
- 不知道正確的方法參數,希望他幫我們找到
- 會讓你的準確度變得有可信度(並非湊巧遇上對TS很有解釋力的模型,即使換了人當TS也有相同的水準)
- 不用擔心新增變數的共線性問題:
因為X之間的共線性不會對於模型的準確度產生影響,只會對係數造成偏誤 迴歸模型可以使用step幫我們找到最佳的變數組合,他是透過一個一個變數慢慢加並找出最高準確度的方法,通常是為了避免共線性問題才這樣做
【進行預測】
因為看不到未來的資料,我們要先基於過去資料做初始模型:
- 首先往前回推一期(11-1月),2月假裝看不到,但我們還是可以得知目標變數Y(2月有無來消費),並據此建立模型預測2月是否來買
- 接著設定Ratio來切割TR/TS的資料,Training完模型後餵給Testing吃,來看我們預測的到底準不準
- 因為我們有2月的Y的資料,所以可以測試這個模型到底有沒有預測力(有點像偷吃步)
但最後我們還是要知道這個模型到底適不適用於未來的預測:
- 做初始模型時要不斷的嘗試,直到挑到一個AUC還不錯的模型後,再使用這個模型的方法參數,去建一個新的模型(最終模型)
- 模型一樣,只是餵的資料不一樣
- 再往後延一期,即從想要的月份往前推一期(12-2月的資料)
- 一樣切割成TR和TS,這時候的Y用以前2月的拿來代入,再去預測3月會不會來買
雖然這邊就無法再像以前偷吃步的可以調到最高的AUC,但我們還是可以找出Base line模型,再稍微做調整
LS0tDQp0aXRsZTogIuWVhualreaVuOaTmuWIhuaekCDliIbmnpDmtYHnqIvku4vntLkiDQphdXRob3I6ICLllJDmgJ3nkKoiDQpkYXRlOiAiYHIgU3lzLnRpbWUoKWAiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQo8aHI+DQoNCiMg44CQ5Lqk5piT6LOH5paZ5b2Z5pW044CRDQoNCiFbXShmaWcvYWdncmVnYXRpb24uanBnKQ0KDQo8YnI+DQoNCisgWu+8muWOn+Wni1BPU+eahOS6pOaYk+e0gOmMhO+8jOS7peWVhuWTgeeCuuWWruS9jeeahOWWruethuS6pOaYkw0KICAgICsg5LiA5by155m856Wo566X5LiA5qyhDQorIFjvvJrlkIjkvbXlkIzkuIDlgIvpoaflrqLlnKjlkIzkuIDlpKnnmoTkuqTmmJPntIDpjIQNCiAgICArIOimluavj+S9jemhp+WuouS4gOWkqeacgOWkmuWPquacg+S+hua2iOiyu+S4gOasoe+8jOS7jeacieaXpeacn+iuiuaVuChyb3cpDQorIEHvvJrku6XpoaflrqJJROS9nOeCuuWfuuacrOWWruS9jShyb3cp55qE5Lqk5piT6LOH5paZDQogICAgKyDlkIzkuIDpoaflrqLlnKjmnJ/plpPlhafmiYDmnInnmoTmtojosrvpoIXnm64oY29sdW1uKeaVtOS9te+8muacieiyt+ipsuWVhuWTgeWwseioiOaVuO+8jOS4puWOu+mZpOaZgumWk+eahOiuiuaVuA0KICAgICsg5q2k6LOH5paZ6KOh6Z2i5pyJ55uu5qiZ6K6K5pW4WT0wLzENCisgQTLvvJoy5pyI5Lu95pyJ5L6G6LO86LK36aGn5a6i6LOH5paZDQogICAgKyDmraTos4fmlpnoo6HpnaLnmoRZ5YWo6YOo562J5pa8MQ0KDQo8aHI+DQoNCiMg44CQ5rqW5YKZ6LOH5paZ44CRDQoNCiFbXShmaWcvcHJlcGFyYXRpb24uanBnKQ0KDQo8YnI+DQoNCisg5bCHMuaciOW+gOWJjeaOqOS4gOacn++8jOijveS9nOmgkOa4rDLmnIjmmK/lkKbmnIPkvobos7zosrfnmoTmqKHlnosNCisg5YiG5Ymy6LOH5paZ55SoUmF0aW8oVFI6VFM9NzozKQ0KKyDoo73kvZzmlrDorormlbjopoHlnKjliIflibLos4fmlpnkuYvliY0NCg0KPGhyPg0KDQojIOOAkOW7uueri+aooeWei+OAkQ0KDQohW10oZmlnL21vZGVsaW5nLmpwZykNCg0KPGJyPg0KDQorIOi/tOatuOaooeWei+mAmuW4uOaYr+acgOS4jea6luS9huWUr+S4gOWPr+S7peW+l+efpXjoiId555qE6Zec5L+CKOS/guaVuCnnmoTmqKHlnosNCisg5rG6562W5qi55Y+v5Lul5YGa6aGe5Yil5qih5Z6L77yM5Lmf5Y+v5Lul5YGa6YCj57qM5oCn5qih5Z6LDQogICAgKyDos4fmlpnph4/lpKfmmYLmupbnorrmgKfkuIDoiKzmr5Tov7Tmrbjlpb3vvIzos4fmlpnlsI/mmYLliYfnnIvkuI3lh7rlpKrlpKfnmoTlt67nlbANCisg6Zqo5qmf5qOu5p6X5aaC5p6c6LOH5paZ5pW46YeP5LiN5aSa77yM5pWI5p6c5YW25a+m5LiN5aSq5aW977yb5Y+N5LmL77yM5pW46YeP5oSI5aSn55qE6LOH5paZ5oSI6YGp5ZCI57Wm6Zqo5qmf5qOu5p6X5YGa77yM5Zug5YW25rqW56K65bqm5b6I6auYDQorIOWPquimgeaYr+ebo+edo+W8j+WtuOe/kueahOaooeWei+mDveWPr+S7peWBmuS6pOWPiempl+itie+8jOaPkOmrmOa6lueiuuW6pg0KKyDnlbbnhLbkuZ/lj6/ku6XlgZrntYTlkIjmqKHlnovvvIzliqDlvLfmqKHlnovnmoTpoJDmuKzlipsNCiAgICArIOS4jeaYr+ebuOmXnOaAp+aEiOmrmOeahOWFqeWAi+aooeWei+ebuOWKoOWwseacgOWlve+8jOacieaZguWAmeW3rueVsOW+iOWkp+eahOaooeWeiyjmlY/mhJ/luqbot5/mmI7norrluqbpg73mmK8x55qE5qW156uv5YiG5biDKeWPjeiAjOWPr+S7peS6kuijnOmgkOa4rOWwjeaWueeahOW8sem7ng0KDQo8aHI+DQoNCiMg44CQ6KO95L2c6K6K5pW444CB5pS56YCy5qih5Z6L44CRDQoNCiFbXShmaWcvZmVhdHVyaW5nLmpwZykNCg0KPGJyPg0KDQorIOijveS9nOaWsOiuiuaVuO+8mg0KICAgIOW+nuWVhuWTgeizh+aWmeWOu+aJvuWFt+acieWVhualreWDueWAvOeahOino+mHi+iuiumHj++8jOaJvuWHuumhp+WuouWxrOaAp+WIhue+pOOAgeWVhuWTgeeGsemWgOiIh+a7r+mKt+OAgeWNgOWIhuaYjuaYn+WVhuWTgeiIh+izoOacrOWVhuWTgeOAgeeGsemKt+iIh+a7r+mKt+WcsOWNgOetieetiQ0KKyDmlLnpgLLmqKHlnovvvJoNCiAgICArIOWYl+ippuWQhOeoruS4jeWQjOeahOaooeWei+aWueazlQ0KICAgICsg5YGa5Lqk5Y+J6amX6K2J6YCy6KGM5Y+D5pW46Kq/5pWZIDxicj4NCiAgICAgICAg5pyJ5YWp5YCL5ZCr5oSP77yaDQogICAgICAgIDEuIOS4jeefpemBk+ato+eiuueahOaWueazleWPg+aVuO+8jOW4jOacm+S7luW5q+aIkeWAkeaJvuWIsA0KICAgICAgICAyLiDmnIPorpPkvaDnmoTmupbnorrluqbororlvpfmnInlj6/kv6HluqYo5Lim6Z2e5rmK5ben6YGH5LiK5bCNVFPlvojmnInop6Pph4vlipvnmoTmqKHlnovvvIzljbPkvb/mj5vkuobkurrnlbZUU+S5n+acieebuOWQjOeahOawtOa6likNCiAgICArIOS4jeeUqOaTlOW/g+aWsOWinuiuiuaVuOeahOWFsee3muaAp+WVj+mhjO+8miA8YnI+DQogICAgICAgIOWboOeCuljkuYvplpPnmoTlhbHnt5rmgKfkuI3mnIPlsI3mlrzmqKHlnovnmoTmupbnorrluqbnlKLnlJ/lvbHpn7/vvIzlj6rmnIPlsI3kv4LmlbjpgKDmiJDlgY/oqqQNCiAgICAgICAg6L+05q245qih5Z6L5Y+v5Lul5L2/55Soc3RlcOW5q+aIkeWAkeaJvuWIsOacgOS9s+eahOiuiuaVuOe1hOWQiO+8jOS7luaYr+mAj+mBjuS4gOWAi+S4gOWAi+iuiuaVuOaFouaFouWKoOS4puaJvuWHuuacgOmrmOa6lueiuuW6pueahOaWueazle+8jOmAmuW4uOaYr+eCuuS6humBv+WFjeWFsee3muaAp+WVj+mhjOaJjemAmeaoo+WBmg0KDQo8aHI+DQoNCiMg44CQ6YCy6KGM6aCQ5ris44CRDQoNCiFbXShmaWcvRi5wbmcpDQoNCjxicj4NCuWboOeCuueci+S4jeWIsOacquS+hueahOizh+aWme+8jOaIkeWAkeimgeWFiOWfuuaWvOmBjuWOu+izh+aWmeWBmuWIneWni+aooeWei++8mg0KDQorIOmmluWFiOW+gOWJjeWbnuaOqOS4gOacnygxMS0x5pyIKe+8jDLmnIjlgYfoo53nnIvkuI3liLDvvIzkvYbmiJHlgJHpgoTmmK/lj6/ku6Xlvpfnn6Xnm67mqJnorormlbhZKDLmnIjmnInnhKHkvobmtojosrsp77yM5Lim5pOa5q2k5bu656uL5qih5Z6L6aCQ5risMuaciOaYr+WQpuS+huiytw0KKyDmjqXokZfoqK3lrppSYXRpb+S+huWIh+WJslRSL1RT55qE6LOH5paZ77yMVHJhaW5pbmflrozmqKHlnovlvozppLXntaZUZXN0aW5n5ZCD77yM5L6G55yL5oiR5YCR6aCQ5ris55qE5Yiw5bqV5rqW5LiN5rqWDQorIOWboOeCuuaIkeWAkeaciTLmnIjnmoRZ55qE6LOH5paZ77yM5omA5Lul5Y+v5Lul5ris6Kmm6YCZ5YCL5qih5Z6L5Yiw5bqV5pyJ5rKS5pyJ6aCQ5ris5YqbKOaciem7nuWDj+WBt+WQg+atpSkNCg0K5L2G5pyA5b6M5oiR5YCR6YKE5piv6KaB55+l6YGT6YCZ5YCL5qih5Z6L5Yiw5bqV6YGp5LiN6YGp55So5pa85pyq5L6G55qE6aCQ5ris77yaDQoNCisg5YGa5Yid5aeL5qih5Z6L5pmC6KaB5LiN5pa355qE5ZiX6Kmm77yM55u05Yiw5oyR5Yiw5LiA5YCLQVVD6YKE5LiN6Yyv55qE5qih5Z6L5b6M77yM5YaN5L2/55So6YCZ5YCL5qih5Z6L55qE5pa55rOV5Y+D5pW477yM5Y675bu65LiA5YCL5paw55qE5qih5Z6LKOacgOe1guaooeWeiykNCisg5qih5Z6L5LiA5qij77yM5Y+q5piv6aS155qE6LOH5paZ5LiN5LiA5qijDQogICAgKyDlho3lvoDlvozlu7bkuIDmnJ/vvIzljbPlvp7mg7PopoHnmoTmnIjku73lvoDliY3mjqjkuIDmnJ8oMTItMuaciOeahOizh+aWmSkNCisg5LiA5qij5YiH5Ymy5oiQVFLlkoxUU++8jOmAmeaZguWAmeeahFnnlKjku6XliY0y5pyI55qE5ou/5L6G5Luj5YWl77yM5YaN5Y676aCQ5risM+aciOacg+S4jeacg+S+huiytw0KDQrpm5bnhLbpgJnpgorlsLHnhKHms5Xlho3lg4/ku6XliY3lgbflkIPmraXnmoTlj6/ku6Xoqr/liLDmnIDpq5jnmoRBVUPvvIzkvYbmiJHlgJHpgoTmmK/lj6/ku6Xmib7lh7pCYXNlIGxpbmXmqKHlnovvvIzlho3nqI3lvq7lgZroqr/mlbQNCg0KPGhyPg0KDQojIOOAkEEtROmajuautemXnOS/guWcluOAkQ0KDQohW10oZmlnL2ZlYXR1cmVfZW5nci5qcGcpDQoNCjxicj48YnI+PGhyPjxicj48YnI+PGJyPjxicj4NCjxzdHlsZT4NCg0KLmNhcHRpb24gew0KICBjb2xvcjogIzc3NzsNCiAgbWFyZ2luLXRvcDogMTBweDsNCn0NCnAgY29kZSB7DQogIHdoaXRlLXNwYWNlOiBpbmhlcml0Ow0KfQ0KcHJlIHsNCiAgd29yZC1icmVhazogbm9ybWFsOw0KICB3b3JkLXdyYXA6IG5vcm1hbDsNCiAgbGluZS1oZWlnaHQ6IDE7DQp9DQpwcmUgY29kZSB7DQogIHdoaXRlLXNwYWNlOiBpbmhlcml0Ow0KfQ0KcCxsaSB7DQogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOw0KfQ0KDQoucnsNCiAgbGluZS1oZWlnaHQ6IDEuMjsNCn0NCg0KLnFpeiB7DQogIGxpbmUtaGVpZ2h0OiAxLjc1Ow0KICBiYWNrZ3JvdW5kOiAjZjBmMGYwOw0KICBib3JkZXItbGVmdDogMTJweCBzb2xpZCAjY2NmZmNjOw0KICBwYWRkaW5nOiA0cHg7DQogIHBhZGRpbmctbGVmdDogMTBweDsNCiAgY29sb3I6ICMwMDk5MDA7DQp9DQoNCnRpdGxlew0KICBjb2xvcjogI2NjMDAwMDsNCiAgZm9udC1mYW1pbHk6ICJUcmVidWNoZXQgTVMiLCAi5b6u6Luf5q2j6buR6auUIiwgIk1pY3Jvc29mdCBKaGVuZ0hlaSI7DQp9DQoNCmJvZHl7DQogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOw0KfQ0KDQpoMSxoMixoMyxoNCxoNXsNCiAgY29sb3I6ICMwMDY2ZmY7DQogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOw0KfQ0KDQoNCmgzew0KICBjb2xvcjogIzAwODgwMDsNCiAgYmFja2dyb3VuZDogI2U2ZmZlNjsNCiAgbGluZS1oZWlnaHQ6IDI7DQogIGZvbnQtd2VpZ2h0OiBib2xkOw0KfQ0KDQpoNXsNCiAgY29sb3I6ICMwMDYwMDA7DQogIGJhY2tncm91bmQ6ICNmOGY4Zjg7DQogIGxpbmUtaGVpZ2h0OiAxLjU7DQogIGZvbnQtd2VpZ2h0OiBib2xkOw0KfQ0KDQo8L3N0eWxlPg==