Cargo los paquetes (IRR, dentro del pack ICC)
library("irr")
library("tidyverse")
library("ggsignif")
Abro datos de mi df2
ICC <- IC <- read.csv("datos2.csv")
summary
summary(ICC)
A..os.de.ejercicio.profesional Sexo Nivel.de.Estudios Promedio.implantes.mensuales
Min. : 2.00 F: 5 Curso : 1 Min. : 1.000
1st Qu.: 7.00 M:27 Diplomado :12 1st Qu.: 4.000
Median :10.50 Especialidad:19 Median : 6.000
Mean :11.16 Mean : 7.156
3rd Qu.:14.00 3rd Qu.: 8.000
Max. :24.00 Max. :30.000
BP1 BP2 MD1 MD2 H1 H2
Min. :3.500 Min. :4.150 Min. : 8.280 Min. : 7.81 Min. :11.06 Min. :11.14
1st Qu.:4.378 1st Qu.:4.388 1st Qu.: 9.848 1st Qu.:10.04 1st Qu.:13.96 1st Qu.:13.54
Median :4.565 Median :4.540 Median :10.955 Median :11.13 Median :14.53 Median :14.52
Mean :4.578 Mean :4.575 Mean :10.959 Mean :11.09 Mean :14.55 Mean :14.35
3rd Qu.:4.827 3rd Qu.:4.670 3rd Qu.:12.098 3rd Qu.:12.24 3rd Qu.:15.22 3rd Qu.:15.07
Max. :5.650 Max. :5.600 Max. :13.860 Max. :13.78 Max. :17.25 Max. :17.31
Seleciono columnas para mediciones Buco-palatino
long_BP <- ICC %>%
select(BP1, BP2)
Calculo ICC para BP
icc(long_BP, model = "twoway", type = "agreement")
Single Score Intraclass Correlation
Model: twoway
Type : agreement
Subjects = 32
Raters = 2
ICC(A,1) = 0.713
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(31,31) = 5.82 , p = 2.15e-06
95%-Confidence Interval for ICC Population Values:
0.487 < ICC < 0.849
Seleciono columnas para mediciones mesio-distal
long_MD <- ICC %>%
select(MD1, MD2)
Calculo ICC para MD
icc(long_MD, model = "twoway", type = "agreement")
Single Score Intraclass Correlation
Model: twoway
Type : agreement
Subjects = 32
Raters = 2
ICC(A,1) = 0.798
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(31,31.8) = 8.79 , p = 1.13e-08
95%-Confidence Interval for ICC Population Values:
0.627 < ICC < 0.896
Selecciono columnas para mediciones de altura (h)
long_h <- ICC %>%
select(H1, H2)
Calculo ICC para h
icc(long_h, model = "twoway", type = "agreement")
Single Score Intraclass Correlation
Model: twoway
Type : agreement
Subjects = 32
Raters = 2
ICC(A,1) = 0.623
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(31,31.9) = 4.29 , p = 4.65e-05
95%-Confidence Interval for ICC Population Values:
0.358 < ICC < 0.796
Calculo ICC genral
icc(general4, model = "twoway", type = "agreement")
Single Score Intraclass Correlation
Model: twoway
Type : agreement
Subjects = 96
Raters = 2
ICC(A,1) = 0.979
F-Test, H0: r0 = 0 ; H1: r0 > 0
F(95,95.1) = 94.2 , p = 8.36e-68
95%-Confidence Interval for ICC Population Values:
0.969 < ICC < 0.986
Promedios y DS, agrupados por nivel de estudio en cada una de las mediciones
Promedio y sd para mediciones
Le doy estrucuta a mi df para graficar
General3 %>%
select(BP1,MD1,H1,BP2,MD2,H2) %>%
gather("Grupo","Valor")
Error in overscope_eval_next(overscope, expr) :
objeto 'BP1' no encontrado
Grafico

ANOVA para mediciones
summary(aov)
Df Sum Sq Mean Sq F value Pr(>F)
long_grafico$Grupo 5 3217 643.5 480 <2e-16 ***
Residuals 186 249 1.3
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = long_grafico$Valor ~ long_grafico$Grupo)
$`long_grafico$Grupo`
diff lwr upr p adj
BP2-BP1 -0.0031250 -0.8366721 0.8304221 1.0000000
H1-BP1 9.9700000 9.1364529 10.8035471 0.0000000
H2-BP1 9.7734375 8.9398904 10.6069846 0.0000000
MD1-BP1 6.3806250 5.5470779 7.2141721 0.0000000
MD2-BP1 6.5065625 5.6730154 7.3401096 0.0000000
H1-BP2 9.9731250 9.1395779 10.8066721 0.0000000
H2-BP2 9.7765625 8.9430154 10.6101096 0.0000000
MD1-BP2 6.3837500 5.5502029 7.2172971 0.0000000
MD2-BP2 6.5096875 5.6761404 7.3432346 0.0000000
H2-H1 -0.1965625 -1.0301096 0.6369846 0.9840688
MD1-H1 -3.5893750 -4.4229221 -2.7558279 0.0000000
MD2-H1 -3.4634375 -4.2969846 -2.6298904 0.0000000
MD1-H2 -3.3928125 -4.2263596 -2.5592654 0.0000000
MD2-H2 -3.2668750 -4.1004221 -2.4333279 0.0000000
MD2-MD1 0.1259375 -0.7076096 0.9594846 0.9979993
LS0tCnRpdGxlOiAiSUNDX0NvbmdyZXNvIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCiNDYXJnbyBsb3MgcGFxdWV0ZXMgKElSUiwgZGVudHJvIGRlbCBwYWNrIElDQykKYGBge3J9CmxpYnJhcnkoImlyciIpCmxpYnJhcnkoInRpZHl2ZXJzZSIpCmxpYnJhcnkoImdnc2lnbmlmIikKYGBgCiNBYnJvIGRhdG9zIGRlIG1pIGRmMgpgYGB7cn0KSUNDIDwtIElDIDwtIHJlYWQuY3N2KCJkYXRvczIuY3N2IikKYGBgCiNzdW1tYXJ5CmBgYHtyfQpzdW1tYXJ5KElDQykKYGBgCiNTZWxlY2lvbm8gY29sdW1uYXMgcGFyYSBtZWRpY2lvbmVzIEJ1Y28tcGFsYXRpbm8KYGBge3J9CmxvbmdfQlAgPC0gSUNDICU+JSAKICBzZWxlY3QoQlAxLCBCUDIpCmBgYAojQ2FsY3VsbyBJQ0MgcGFyYSBCUApgYGB7cn0KaWNjKGxvbmdfQlAsIG1vZGVsID0gInR3b3dheSIsIHR5cGUgPSAiYWdyZWVtZW50IikKYGBgCiNTZWxlY2lvbm8gY29sdW1uYXMgcGFyYSBtZWRpY2lvbmVzIG1lc2lvLWRpc3RhbApgYGB7cn0KbG9uZ19NRCA8LSBJQ0MgJT4lIAogIHNlbGVjdChNRDEsIE1EMikKYGBgCiNDYWxjdWxvIElDQyBwYXJhIE1ECmBgYHtyfQppY2MobG9uZ19NRCwgbW9kZWwgPSAidHdvd2F5IiwgdHlwZSA9ICJhZ3JlZW1lbnQiKQpgYGAKI1NlbGVjY2lvbm8gY29sdW1uYXMgcGFyYSBtZWRpY2lvbmVzIGRlIGFsdHVyYSAoaCkKYGBge3J9CmxvbmdfaCA8LSBJQ0MgJT4lIAogIHNlbGVjdChIMSwgSDIpCmBgYAojQ2FsY3VsbyBJQ0MgcGFyYSBoCmBgYHtyfQppY2MobG9uZ19oLCBtb2RlbCA9ICJ0d293YXkiLCB0eXBlID0gImFncmVlbWVudCIpCmBgYAojUmVmb3JtYXRlbyBlbCBkZiBwYXJhIG9idGVuZXIgZWwgSUNDIGdlbmVyYWwKYGBge3J9CmxvbmdfZ2VuZXJhbDEgPC0gSUNDICU+JSAKICBzZWxlY3QoQlAxLE1EMSxIMSklPiUgCiAgZ2F0aGVyKCJHcnVwbzEiLCJWYWxvcjEiKQpgYGAKYGBge3J9CmxvbmdfZ2VuZXJhbDIgPC0gSUNDICU+JSAKICBzZWxlY3QoQlAyLE1EMixIMiklPiUgCiAgZ2F0aGVyKCJHcnVwbzIiLCJWYWxvcjIiKQpgYGAKYGBge3J9CkdlbmVyYWwzIDwtIGJpbmRfY29scyhsb25nX2dlbmVyYWwxLCBsb25nX2dlbmVyYWwyKQpgYGAKYGBge3J9CmdlbmVyYWw0IDwtIEdlbmVyYWwzICU+JSAKICBzZWxlY3QoVmFsb3IxLFZhbG9yMikKYGBgCiNDYWxjdWxvIElDQyBnZW5yYWwKYGBge3J9CmljYyhnZW5lcmFsNCwgbW9kZWwgPSAidHdvd2F5IiwgdHlwZSA9ICJhZ3JlZW1lbnQiKQpgYGAKI1Byb21lZGlvcyB5IERTLCBhZ3J1cGFkb3MgcG9yIG5pdmVsIGRlIGVzdHVkaW8gZW4gY2FkYSB1bmEgZGUgbGFzIG1lZGljaW9uZXMKYGBge3J9CklDQyAlPiUgCiAgZ3JvdXBfYnkoTml2ZWwuZGUuRXN0dWRpb3MpICU+JSAKICBzdW1tYXJpc2UobiA9IG4oKSwgCiAgICAgICAgICAgICJQcm9tZWRpb0JQMSIgPSBtZWFuKEJQMSksIAogICAgICAgICAgICAiU0QgQlAxIiA9IHNkKEJQMSksCiAgICAgICAgICAgICJQcm9tZWRpbyBCUDIiID0gbWVhbihCUDIpLCAKICAgICAgICAgICAgIlNEIEJQMiIgPSBzZChCUDIpICwKICAgICAgICAgICAgIlByb21lZGlvIE1EMSIgPSBtZWFuKE1EMSksIAogICAgICAgICAgICAiU0QgTUQxIiA9IHNkKE1EMSksCiAgICAgICAgICAgICJQcm9tZWRpbyBNRDIiPW1lYW4oTUQyKSwKICAgICAgICAgICAgIlNEIE1EMiI9c2QoTUQyKSwKICAgICAgICAgICAgIlByb21lZGlvIEgxIj1tZWFuKEgxKSwKICAgICAgICAgICAgIlNEIEgxIj1zZChIMSksCiAgICAgICAgICAgICJQcm9tZWRpbyBIMiI9bWVhbihIMiksCiAgICAgICAgICAgICJTRCBIMiI9c2QoSDIpKQoKYGBgCiNQcm9tZWRpbyB5IHNkIHBhcmEgbWVkaWNpb25lcwpgYGB7cn0KSUNDICU+JSAKICBzdW1tYXJpc2UoIlByb21lZGlvQlAxIiA9IG1lYW4oQlAxKSwgCiAgICAgICAgICAgICJTRCBCUDEiID0gc2QoQlAxKSwKICAgICAgICAgICAgIlByb21lZGlvIEJQMiIgPSBtZWFuKEJQMiksIAogICAgICAgICAgICAiU0QgQlAyIiA9IHNkKEJQMikgLAogICAgICAgICAgICAiUHJvbWVkaW8gTUQxIiA9IG1lYW4oTUQxKSwgCiAgICAgICAgICAgICJTRCBNRDEiID0gc2QoTUQxKSwKICAgICAgICAgICAgIlByb21lZGlvIE1EMiI9bWVhbihNRDIpLAogICAgICAgICAgICAiU0QgTUQyIj1zZChNRDIpLAogICAgICAgICAgICAiUHJvbWVkaW8gSDEiPW1lYW4oSDEpLAogICAgICAgICAgICAiU0QgSDEiPXNkKEgxKSwKICAgICAgICAgICAgIlByb21lZGlvIEgyIj1tZWFuKEgyKSwKICAgICAgICAgICAgIlNEIEgyIj1zZChIMikpCmBgYAojTGUgZG95IGVzdHJ1Y3V0YSBhIG1pIGRmIHBhcmEgZ3JhZmljYXIKYGBge3J9CmxvbmdfZ3JhZmljbyA8LSBJQ0MgJT4lIAogIHNlbGVjdChCUDEsTUQxLEgxLEJQMixNRDIsSDIpJT4lIAogIGdhdGhlcigiR3J1cG8iLCJWYWxvciIpCmBgYAojR3JhZmljbyAKYGBge3J9CmxvbmdfZ3JhZmljbyAlPiUgCiAgZ2dwbG90KGFlcyh4PSBHcnVwbywgeT1WYWxvciwgZmlsbD1HcnVwbykpICsKICBnZW9tX2JveHBsb3QoKSsgCiAgdGhlbWVfY2xhc3NpYygpKwogIHhsYWIoIkdydXBvIikgKwogIHlsYWIoIk1lZGljaW9uIGVuIG1tIikgKwogIGdndGl0bGUoIk1lZGljaW9uZXMgZW4gQ0JDVCBwYXJhIGNhZGEgdW5vIGRlIGxvcyBncnVwb3MgZXZhbHVhZG9zIikgKwogIGdlb21fc2lnbmlmKGNvbXBhcmlzb25zID0gbGlzdChjKCJCUDEiLCAiQlAyIikpLCBtYXBfc2lnbmlmX2xldmVsPVRSVUUpICsKICBnZW9tX3NpZ25pZihjb21wYXJpc29ucyA9IGxpc3QoYygiSDEiLCAiSDIiKSksIG1hcF9zaWduaWZfbGV2ZWw9VFJVRSkrCiAgZ2VvbV9zaWduaWYoY29tcGFyaXNvbnMgPSBsaXN0KGMoIk1EMSIsICJNRDIiKSksIG1hcF9zaWduaWZfbGV2ZWw9VFJVRSkKYGBgCiNBTk9WQSBwYXJhIG1lZGljaW9uZXMKYGBge3J9CmFvdiA8LSBhb3YobG9uZ19ncmFmaWNvJFZhbG9yfmxvbmdfZ3JhZmljbyRHcnVwbykKc3VtbWFyeShhb3YpCmBgYApgYGB7cn0KVHVrZXlIU0QoYW92KSAjUGFyYSBtaXMgZ3J1cG9zIHF1ZSBuZWNlc2l0bywgbm8gb2J0ZW5nbyBkaWZlcmVuY2lhcyBlc3RhZGlzdGljYXMKYGBgCgo=