library(readxl)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(tibble)
library(magrittr)
setwd("D:/UIUC/Becklab/Master project/John's data")
data = read_excel("cortex_experiment_3_data.xlsx",sheet=1)

accuracy_check = 
  data %>%
  group_by(subject) %>%
  summarise(accuracy = mean(accuracy, na.rm = TRUE))

accuracy_cutoff = .6
good_subjs = accuracy_check$subject[which(accuracy_check$accuracy > accuracy_cutoff)]
diffs = as_tibble(matrix(ncol = 4, nrow = (length(good_subjs) * 2)))
colnames(diffs) = c("participant", "accuracy", "rt", "condition")
diffs$participant = rep(good_subjs, 2)
diffs$condition = 
  c(rep("inner_invalid horizontal-vertical", length(good_subjs)), 
    rep("outer_invalid horizontal-vertical", length(good_subjs)))
for (i in 1:length(good_subjs)) {
  current = filter(data, subject == good_subjs[i])
  diffs$accuracy[i] = current$accuracy[1] - current$accuracy[2]
  diffs$rt[i] = current$rt[2] - current$rt[1]
  diffs$accuracy[i + length(good_subjs)] = current$accuracy[4] - current$accuracy[5]
  diffs$rt[i + length(good_subjs)] = current$rt[4] - current$rt[5]
}
options(max.print = 20000)
print.data.frame(diffs)
##    participant    accuracy           rt                         condition
## 1            8  0.04166667  -63.2231660 inner_invalid horizontal-vertical
## 2            9 -0.18750000   43.8838475 inner_invalid horizontal-vertical
## 3           10 -0.08333333   15.6352941 inner_invalid horizontal-vertical
## 4           11  0.25000000  105.7272727 inner_invalid horizontal-vertical
## 5           12 -0.18750000   46.7624633 inner_invalid horizontal-vertical
## 6           13 -0.12500000    5.2891263 inner_invalid horizontal-vertical
## 7           14  0.02083333  190.4642857 inner_invalid horizontal-vertical
## 8           15 -0.08333333  -12.6522727 inner_invalid horizontal-vertical
## 9           16  0.08333333  150.5142857 inner_invalid horizontal-vertical
## 10          17  0.02083333  114.0064516 inner_invalid horizontal-vertical
## 11          18 -0.08333333   98.5820272 inner_invalid horizontal-vertical
## 12          20  0.08333333   -0.6473214 inner_invalid horizontal-vertical
## 13          21  0.12500000 -182.0745192 inner_invalid horizontal-vertical
## 14          22 -0.12500000  -50.7505828 inner_invalid horizontal-vertical
## 15           8  0.16666667   20.1212121 outer_invalid horizontal-vertical
## 16           9  0.08333333  174.1667765 outer_invalid horizontal-vertical
## 17          10 -0.08333333  -11.7919799 outer_invalid horizontal-vertical
## 18          11  0.02083333  -29.0567376 outer_invalid horizontal-vertical
## 19          12  0.16666667  -73.3616030 outer_invalid horizontal-vertical
## 20          13  0.02083333  -46.1843854 outer_invalid horizontal-vertical
## 21          14  0.04166667  125.3272727 outer_invalid horizontal-vertical
## 22          15  0.00000000   -0.4347826 outer_invalid horizontal-vertical
## 23          16 -0.06250000  -67.7993243 outer_invalid horizontal-vertical
## 24          17  0.00000000   32.3000000 outer_invalid horizontal-vertical
## 25          18 -0.04166667   19.3520951 outer_invalid horizontal-vertical
## 26          20  0.22916667 -120.8821138 outer_invalid horizontal-vertical
## 27          21  0.10416667 -103.1117886 outer_invalid horizontal-vertical
## 28          22  0.08333333   -3.3972154 outer_invalid horizontal-vertical
t.test(diffs$accuracy[diffs$condition == 'inner_invalid horizontal-vertical'],
       diffs$accuracy[diffs$condition == 'outer_invalid horizontal-vertical'], paired=T)
## 
##  Paired t-test
## 
## data:  diffs$accuracy[diffs$condition == "inner_invalid horizontal-vertical"] and diffs$accuracy[diffs$condition == "outer_invalid horizontal-vertical"]
## t = -1.6795, df = 13, p-value = 0.1169
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1599072  0.0200263
## sample estimates:
## mean of the differences 
##             -0.06994048