前言:從交易記錄到顧客價值
善用商業數據分析的工具和技巧,光靠一份最簡單的交易紀錄(只有顧客ID、交易日期和交易金額三個欄位),我們就可以做一系列很深入、很有價值的顧客價值分析和行銷策略規劃,包括:
- 交易記錄分析:
- 顧客群組與標籤:
- 集群分析
- 群組屬性分析
- 組間流動機率
- 顧客(個人)流動機率
從這一些分析我們可以看到公司主要的營收和獲利的重要來源,我們也可以看到這一些產生獲利的群組是不是有成長或者衰退的趨勢;據此我們可以設定行銷的重點,決定行銷的策略,和規劃行銷的工具。除了上述的敘述統計、集群分析、和資料視覺化之外,我們還可以利用這些簡單的交易紀錄:
- 建立預測性模型,預測每一位顧客的:
- 保留機率
- 預期營收
- 組間變換機率
- 下次可能購買時間
利用這一些預測我們就可以進行全面客製化的:
- 顧客價值管理:
- 顧客終生價值
- 顧客吸收策略
- 顧客發展策略
- 顧客保留策略
- 針對性行銷:
Setup
Sys.setlocale("LC_ALL","C")
[1] "C"
packages = c(
"dplyr","ggplot2","googleVis","devtools","magrittr","caTools","ROCR","caTools")
existing = as.character(installed.packages()[,1])
for(pkg in packages[!(packages %in% existing)]) install.packages(pkg)
if(!is.element("chorddiag", existing))
devtools::install_github("mattflor/chorddiag")
Library
rm(list=ls(all=T))
options(digits=4, scipen=12)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(ggplot2)
library(caTools)
library(ROCR)
Loading required package: gplots
Attaching package: 'gplots'
The following object is masked from 'package:stats':
lowess
library(googleVis)
Creating a generic function for 'toJSON' from package 'jsonlite' in package 'googleVis'
Welcome to googleVis version 0.6.2
Please read Google's Terms of Use
before you start using the package:
https://developers.google.com/terms/
Note, the plot method of googleVis will by default use
the standard browser to display its output.
See the googleVis package vignettes for more details,
or visit http://github.com/mages/googleVis.
To suppress this message use:
suppressPackageStartupMessages(library(googleVis))
library(chorddiag)
1 1. 資料整理
1.1 交易資料 (X)
X = read.table(
'purchases.txt', header=FALSE, sep='\t', stringsAsFactors=F)
names(X) = c('cid','amount','date')
X$date = as.Date(X$date)
summary(X) # 交易次數 51243
cid amount date
Min. : 10 Min. : 5 Min. :2005-01-02
1st Qu.: 57720 1st Qu.: 25 1st Qu.:2009-01-17
Median :102440 Median : 30 Median :2011-11-23
Mean :108935 Mean : 62 Mean :2011-07-14
3rd Qu.:160525 3rd Qu.: 60 3rd Qu.:2013-12-29
Max. :264200 Max. :4500 Max. :2015-12-31
par(cex=0.8)
hist(X$date, "years", las=2, freq=T, xlab="", main="No. Transaction by Year")

- 格式轉換正確後,即可用hist(X$date, “years” 看年份之間關係
n_distinct(X$cid) # 顧客數 18417
[1] 18417
- 至目前為止由敘述統計可看出: 交易次數約5萬筆,顧客約1.8萬人
- 代表平均一人約消費2~3次
1.2 顧客資料 (A)
A = X %>%
mutate(days = as.integer(as.Date("2016-01-01") - date)) %>%
group_by(cid) %>% summarise(
recent = min(days), # 最近購買距今天數
freq = n(), # 購買次數
money = mean(amount), # 平均購買金額
senior = max(days), # 第一次購買距今天數
since = min(date) # 第一次購買日期
) %>% data.frame
- days: 與做期中競賽時相同之概念,藉由日期差算出天數
- A: 顧客資料之data frame
1.4 顧客資料摘要
summary(A)
cid recent freq money senior
Min. : 10 Min. : 1 Min. : 1.00 Min. : 5 Min. : 1
1st Qu.: 81990 1st Qu.: 244 1st Qu.: 1.00 1st Qu.: 22 1st Qu.: 988
Median :136430 Median :1070 Median : 2.00 Median : 30 Median :2087
Mean :137574 Mean :1253 Mean : 2.78 Mean : 58 Mean :1984
3rd Qu.:195100 3rd Qu.:2130 3rd Qu.: 3.00 3rd Qu.: 50 3rd Qu.:2992
Max. :264200 Max. :4014 Max. :45.00 Max. :4500 Max. :4016
since
Min. :2005-01-02
1st Qu.:2007-10-23
Median :2010-04-15
Mean :2010-07-26
3rd Qu.:2013-04-18
Max. :2015-12-31
1.5 變數的分布狀況
p0 = par(cex=0.8, mfrow=c(2,2), mar=c(3,3,4,2))
hist(A$recent,20,main="recency",ylab="",xlab="")
hist(pmin(A$freq, 10),0:10,main="frequency",ylab="",xlab="")
hist(A$senior,20,main="seniority",ylab="",xlab="")
hist(log(A$money,10),main="log(money)",ylab="",xlab="")

- 由recency圖: 最左邊可看出有些活躍顧客持續在消費
- frequency: 離散分布,圖中超過10直接全部加總在一起
- 由seniority圖:可看出哪個時期吸收較多新顧客
- log1.5約=30 , log2.5約=300 以此類推
2. 層級式集群分析
2.1 RFM顧客分群
set.seed(111)
A$grp = kmeans(scale(A[,2:4]),10)$cluster
table(A$grp) # 族群大小
1 2 3 4 5 6 7 8 9 10
1073 2266 1296 2237 3207 1942 1781 2392 2096 127
2.2 顧客群組屬性
group_by(A, grp) %>% summarise(
recent=mean(recent),
freq=mean(freq),
money=mean(money),
size=n() ) %>%
mutate( revenue = size*money/1000 ) %>%
filter(size > 1) %>%
ggplot(aes(x=freq, y=money)) +
geom_point(aes(size=revenue, col=recent),alpha=0.5) +
scale_size(range=c(4,30)) +
scale_color_gradient(low="green",high="red") +
scale_x_log10() + scale_y_log10(limits=c(30,3000)) +
geom_text(aes(label = size ),size=3) +
theme_bw() + guides(size=F) +
labs(title="Customer Segements",
subtitle="(bubble_size:revenue_contribution; text:group_size)",
color="Recency") +
xlab("Frequency (log)") + ylab("Average Transaction Amount (log)")

- 泡泡圖優點: x軸、y軸、泡泡大小、顏色,至少可看出4個屬性->必須善用!!!
- 此泡泡圖缺點: 靜態看不出其改變過程
3. 規則分群
- 為何要用規則分群? 因為kmeans方法中期族群命名並無規律,且每期分好的族群組成可能都不相同。為了做出動態圖形並看出其隨時間之改變,必須使用規則分群。
3.1 顧客分群規則
STS = c("N1","N2","R1","R2","S1","S2","S3")
Status = function(rx,fx,mx,sx,K) {factor(
ifelse(sx < 2*K,
ifelse(fx*mx > 50, "N2", "N1"),
ifelse(rx < 2*K,
ifelse(sx/fx < 0.75*K,"R2","R1"),
ifelse(rx < 3*K,"S1",
ifelse(rx < 4*K,"S2","S3")))), STS)}
3.2 平均購買週期
K = as.integer(sum(A$senior[A$freq>1]) / sum(A$freq[A$freq>1])); K
[1] 521
回購顧客的平均購買週期 K = 521 days
3.3 滑動資料窗格
Y = list() # 建立一個空的LIST
for(y in 2010:2015) { # 每年年底將顧客資料彙整成一個資料框
D = as.Date(paste0(c(y, y-1),"-12-31")) # 當期、前期的期末日期
Y[[paste0("Y",y)]] = X %>% # 從交易資料做起
filter(date <= D[1]) %>% # 將資料切齊到期末日期
mutate(days = 1 + as.integer(D[1] - date)) %>% # 交易距期末天數
group_by(cid) %>% summarise( # 依顧客彙總 ...
recent = min(days), # 最後一次購買距期末天數
freq = n(), # 購買次數 (至期末為止)
money = mean(amount), # 平均購買金額 (至期末為止)
senior = max(days), # 第一次購買距期末天數
status = Status(recent,freq,money,senior,K), # 期末狀態
since = min(date), # 第一次購買日期
y_freq = sum(date > D[2]), # 當期購買次數
y_revenue = sum(amount[date > D[2]]) # 當期購買金額
) %>% data.frame }
head(Y$Y2015)
3.4 每年年底的累計顧客人數
sapply(Y, nrow)
Y2010 Y2011 Y2012 Y2013 Y2014 Y2015
10407 11674 13562 15468 16905 18417
3.5 族群大小變化趨勢
cols = c("gold","orange","blue","green","pink","magenta","darkred")
sapply(Y, function(df) table(df$status)) %>% barplot(col=cols)
legend("topleft",rev(STS),fill=rev(cols))

- 最上面咖啡色的沉睡顧客越來越多-> 因為沒有設定睡了多久以後自動剔除
3.6 族群屬性動態分析
CustSegments = do.call(rbind, lapply(Y, function(d) {
group_by(d, status) %>% summarise(
average_frequency = mean(freq),
average_amount = mean(money),
total_revenue = sum(y_revenue),
total_no_orders = sum(y_freq),
average_recency = mean(recent),
average_seniority = mean(senior),
group_size = n()
)})) %>% ungroup %>%
mutate(year=rep(2010:2015, each=7)) %>% data.frame
head(CustSegments)
plot( gvisMotionChart(
CustSegments, "status", "year",
options=list(width=900, height=600) ) )
- 進入chrome後->右鍵設定->進階->安全性->內容設定->flash點開新增127.0.0.1
- 可指定族群看其移動之軌跡
3.7 族群屬性動態分析
df = merge(Y$Y2014[,c(1,6)], Y$Y2015[,c(1,6)],
by="cid", all.x=T)
tx = table(df$status.x, df$status.y) %>%
as.data.frame.matrix() %>% as.matrix()
tx # 流量矩陣
N1 N2 R1 R2 S1 S2 S3
N1 1705 381 144 45 831 0 0
N2 0 1131 267 430 263 0 0
R1 0 0 1240 43 819 0 0
R2 0 0 199 1742 75 0 0
S1 0 0 115 3 819 1026 0
S2 0 0 78 1 0 692 1339
S3 0 0 97 0 0 0 3420
- 由流量矩陣可看出2014屬於某族群的人在2015變成什麼族群
tx %>% prop.table(1) %>% round(3) # 流量矩陣(%)
N1 N2 R1 R2 S1 S2 S3
N1 0.549 0.123 0.046 0.014 0.268 0.000 0.000
N2 0.000 0.541 0.128 0.206 0.126 0.000 0.000
R1 0.000 0.000 0.590 0.020 0.390 0.000 0.000
R2 0.000 0.000 0.099 0.864 0.037 0.000 0.000
S1 0.000 0.000 0.059 0.002 0.417 0.523 0.000
S2 0.000 0.000 0.037 0.000 0.000 0.328 0.635
S3 0.000 0.000 0.028 0.000 0.000 0.000 0.972
3.8 互動式流量分析
chorddiag(tx, groupColors=cols)
- 可注意到睡著的人不是繼續睡就是睡得更深!
- 所以在顧客睡得很沉之前必須做出反應
4. 建立模型
在這個案例裡面,我們的資料是收到Y2015年底,所以我們可以假設現在的時間是Y2015年底,我們想要用現有的資料建立模型,來預測每一位顧客:
- 在Y2016年是否會來購買 (保留率:Retain)
- 她來購買的話,會買多少錢 (購買金額:Revenue)
但是,我們並沒有Y2016的資料,為了要建立模型,我們需要先把時間回推一期,也就是說:
- 用Y2014年底以前的資料整理出預測變數(X)
- 用Y2015年的資料整理出目標變數(Y)
假如Y2016的情況(跟Y2015比)沒有太大的變化的話,接下來我們就可以
- 使用該模型,以Y2015年底的資料,預測Y2016的狀況
4.1 準備資料
我們用Y2014年底的資料做自變數,Y2015年的資料做應變數
CX = left_join(Y$Y2014, Y$Y2015[,c(1,8,9)], by="cid")
head(CX)
- left_join(Y\(Y2014, Y\)Y2015[,c(1,8,9)]: 把後面的89欄抄到前面
- 兩邊都要有此cid才會抄入
names(CX)[8:11] = c("freq0","revenue0","Retain", "Revenue")
CX$Retain = CX$Retain > 0
head(CX)
table(CX$Retain) %>% prop.table() # 平均保留機率 = 22.54%
FALSE TRUE
0.7701 0.2299
4.2 建立類別模型
mRet = glm(Retain ~ ., CX[,c(2:3,6,8:10)], family=binomial())
summary(mRet)
Call:
glm(formula = Retain ~ ., family = binomial(), data = CX[, c(2:3,
6, 8:10)])
Deviance Residuals:
Min 1Q Median 3Q Max
-3.689 -0.473 -0.298 -0.142 3.386
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.074007 0.089431 -12.01 < 2e-16 ***
recent -0.002067 0.000131 -15.73 < 2e-16 ***
freq 0.095217 0.013882 6.86 0.0000000000069 ***
statusN2 0.669429 0.070234 9.53 < 2e-16 ***
statusR1 0.488321 0.084389 5.79 0.0000000071864 ***
statusR2 1.290002 0.110841 11.64 < 2e-16 ***
statusS1 0.670604 0.146532 4.58 0.0000047279944 ***
statusS2 1.353554 0.208210 6.50 0.0000000000798 ***
statusS3 2.573689 0.275786 9.33 < 2e-16 ***
freq0 0.566557 0.065532 8.65 < 2e-16 ***
revenue0 -0.000132 0.000135 -0.98 0.33
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 18228 on 16904 degrees of freedom
Residual deviance: 11766 on 16894 degrees of freedom
AIC: 11788
Number of Fisher Scoring iterations: 6
4.3 估計類別模型的準確性
pred = predict(mRet,type="response")
table(pred>0.5,CX$Retain)
FALSE TRUE
FALSE 12045 1530
TRUE 974 2356
# 混淆矩陣 (Confusion Matrix)
table(pred>0.5,CX$Retain) %>%
{sum(diag(.))/sum(.)} # 正確率(ACC): 85.19%
[1] 0.8519
colAUC(pred,CX$Retain) # 辯識率(AUC): 87.92%
[,1]
FALSE vs. TRUE 0.8792
prediction(pred, CX$Retain) %>% # ROC CURVE
performance("tpr", "fpr") %>%
plot(print.cutoffs.at=seq(0,1,0.1))

4.4 建立數量模型
dx = subset(CX, Revenue > 0) # 只對有來購買的人做模型
mRev = lm(log(Revenue) ~ recent + freq + log(1+money) + senior +
status + freq0 + log(1+revenue0), dx)
summary(mRev) # 判定係數:R2 = 0.713
Call:
lm(formula = log(Revenue) ~ recent + freq + log(1 + money) +
senior + status + freq0 + log(1 + revenue0), data = dx)
Residuals:
Min 1Q Median 3Q Max
-3.245 -0.209 -0.067 0.205 3.435
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0587930 0.0458344 1.28 0.1997
recent 0.0003541 0.0000507 6.98 0.00000000000337 ***
freq 0.0526850 0.0046504 11.33 < 2e-16 ***
log(1 + money) 0.9320818 0.0135203 68.94 < 2e-16 ***
senior -0.0001369 0.0000182 -7.52 0.00000000000007 ***
statusN2 0.0127716 0.0262656 0.49 0.6268
statusR1 0.1927532 0.0407579 4.73 0.00000233405019 ***
statusR2 0.0297685 0.0352479 0.84 0.3984
statusS1 0.0082406 0.0630355 0.13 0.8960
statusS2 -0.2406398 0.0865731 -2.78 0.0055 **
statusS3 -0.3667341 0.1181061 -3.11 0.0019 **
freq0 0.0103133 0.0172551 0.60 0.5501
log(1 + revenue0) 0.0632756 0.0094003 6.73 0.00000000001930 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.463 on 3873 degrees of freedom
Multiple R-squared: 0.713, Adjusted R-squared: 0.712
F-statistic: 802 on 12 and 3873 DF, p-value: <2e-16
plot(log(dx$Revenue), predict(mRev), col='pink', cex=0.65)
abline(0,1,col='red')

5. 估計顧客終生價值
5.1 Y2016的預測值
使用模型對Y2015年底的資料做預測,對資料中的每一位顧客,預測她們在Y2016的保留率和購買金額。
CX = Y$Y2015
names(CX)[8:9] = c("freq0","revenue0")
# 預測Y2016保留率
CX$ProbRetain = predict(mRet,CX,type='response')
# 預測Y2016購買金額
CX$PredRevenue = exp(predict(mRev,CX))
par(mfrow=c(1,2), mar=c(4,3,3,2), cex=0.8)
hist(CX$ProbRetain,main="ProbRetain", ylab="")
hist(log(CX$PredRevenue,10),main="log(PredRevenue)", ylab="")

5.2 估計顧客終生價值(CLV)
顧客\(i\)的終生價值
\[ V_i = \sum_{t=0}^N g \times m_i \frac{r_i^t}{(1+d)^t} = g \times m_i \sum_{t=0}^N (\frac{r_i}{1+d})^t \]
\(m_i\)、\(r_i\):顧客\(i\)的預期(每期)營收貢獻、保留機率
\(g\)、\(d\):公司的(稅前)營業利潤利率、資金成本
g = 0.5 # (稅前)獲利率
N = 5 # 期數 = 5
d = 0.1 # 利率 = 10%
CX$CLV = g * CX$PredRevenue * rowSums(sapply(
0:N, function(i) (CX$ProbRetain/(1+d))^i ) )
summary(CX$CLV)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3 16 24 51 45 5094
par(mar=c(2,2,3,1), cex=0.8)
hist(log(CX$CLV,10), xlab="", ylab="")

5.3 比較各族群的價值
# 各族群的平均營收貢獻、保留機率、終生價值
sapply(CX[,10:12], tapply, CX$status, mean)
ProbRetain PredRevenue CLV
N1 0.20269 31.98 20.17
N2 0.44075 131.23 110.89
R1 0.34150 69.85 54.60
R2 0.74925 91.27 136.31
S1 0.05724 56.10 29.66
S2 0.03475 49.48 25.58
S3 0.02326 49.36 25.17
par(mar=c(3,3,4,2), cex=0.8)
boxplot(log(CLV)~status, CX, main="CLV by Groups")

7. 選擇行銷對象
給定某一行銷工具的成本和預期效益,選擇可以施行這項工具的對象。
7.1 對R2族群進行保留
R2族群的預測保留率和購買金額
par(mfrow=c(1,2), mar=c(4,3,3,2), cex=0.8)
hist(CX$ProbRetain[CX$status=="R2"],main="ProbRetain",xlab="")
hist(log(CX$PredRevenue[CX$status=="R2"],10),main="PredRevenue",xlab="")

7.2 估計預期報酬
假設行銷工具的成本和預期效益為
cost = 10 # 成本
effect = 0.75 # 效益:下一期的購買機率
估計這項行銷工具對每一位R2顧客的預期報酬
Target = subset(CX, status=="R2")
Target$ExpReturn = (effect - Target$ProbRetain) * Target$PredRevenue - cost
summary(Target$ExpReturn)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-515.8 -15.4 -11.5 -10.3 -8.1 646.9
這一項工具對R2顧客的預期報酬是負的
7.3 選擇行銷對象
但是,我們還是可以挑出許多預期報酬很大的行銷對象
Target %>% arrange(desc(ExpReturn)) %>% select(cid, ExpReturn) %>% head(15)
sum(Target$ExpReturn > 0) # 可實施對象:258
[1] 258
在R2之中,有258人的預期報酬大於零,如果對這258人使用這項工具,我們的期望報酬是:
sum(Target$ExpReturn[Target$ExpReturn > 0]) # 預期報酬:6464
[1] 6464
QUIZ:
我們可以算出對所有的族群實施這項工具的期望報酬 …
Target = CX
Target$ExpReturn = (effect - Target$ProbRetain) * Target$PredRevenue - cost
filter(Target, Target$ExpReturn > 0) %>%
group_by(status) %>% summarise(
No.Target = n(),
AvgROI = mean(ExpReturn),
TotalROI = sum(ExpReturn) ) %>% data.frame
這個結果是合理的嗎? 你想要怎麼修正這項分析的程序呢?
8. 結論
如果你只有顧客ID、交易日期、交易金額三個欄位的話,你可以做的分析包括:
- 全體顧客和每一個顧客分群的:
- 族群大小與成長趨勢
- 族群屬性分析:如平均CLV、平均營收貢獻、成長率、毛利率(需要有成本資料)等等
- 組間流量和平均流動機率
- 每一個顧客的:
- 保留率、預期購買金額、終身價值
- 目前所在群組,以及下一期會轉到個群組的機率
- 如果有行銷工具的使用紀錄的話,我們也可以估計每一樣行銷工具、對每一位顧客的成功機率
一般而言,這一些分析的結果,足夠讓我們制定顧客發展和顧客保留策略;至於顧客吸收策略,我們通常還需要從CRM撈出顧客個人屬性資料才能做到。
This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.
plot(cars)
Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.
When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).
The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KdGl0bGU6ICJDVk3vvJrpoaflrqLlg7nlgLznrqHnkIYgIg0KYXV0aG9yOiAi5Y2T6ZuN54S2IEQ5OTQwMTAwMDEsIDIwMTgvMDcvMjkiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQo8YnI+DQoNCiMjIyDliY3oqIDvvJrlvp7kuqTmmJPoqJjpjITliLDpoaflrqLlg7nlgLwNCg0K5ZaE55So5ZWG5qWt5pW45pOa5YiG5p6Q55qE5bel5YW35ZKM5oqA5ben77yM5YWJ6Z2g5LiA5Lu95pyA57Ch5Zau55qE5Lqk5piT57SA6YyEKOWPquaciemhp+WuoklE44CB5Lqk5piT5pel5pyf5ZKM5Lqk5piT6YeR6aGN5LiJ5YCL5qyE5L2NKe+8jOaIkeWAkeWwseWPr+S7peWBmuS4gOezu+WIl+W+iOa3seWFpeOAgeW+iOacieWDueWAvOeahOmhp+WuouWDueWAvOWIhuaekOWSjOihjOmKt+etlueVpeimj+WKg++8jOWMheaLrO+8mg0KDQorICoq5Lqk5piT6KiY6YyE5YiG5p6QKirvvJoNCiAgICArIOaVmOi/sOe1seioiA0KICAgICsg6Lao5Yui44CB5Lqk5Y+J5YiG5p6QDQogICAgKyDos4fmlpnoppboprrljJYNCg0KKyAqKumhp+Wuoue+pOe1hOiIh+aomeexpCoq77yaDQogICAgKyDpm4bnvqTliIbmnpANCiAgICArIOe+pOe1hOWxrOaAp+WIhuaekA0KICAgICsg57WE6ZaT5rWB5YuV5qmf546HDQogICAgKyDpoaflrqIo5YCL5Lq6Kea1geWLleapn+eOhw0KDQoNCjxjZW50ZXI+DQoNCiFb5ZyW5LiA44CB6aGn5a6i5YO55YC8566h55CG55qE5bGk5qyhXShmaWcvZmlnMS5wbmcpDQoNCjwvY2VudGVyPg0KDQo8YnI+5b6e6YCZ5LiA5Lqb5YiG5p6Q5oiR5YCR5Y+v5Lul55yL5Yiw5YWs5Y+45Li76KaB55qE54ef5pS25ZKM542y5Yip55qE6YeN6KaB5L6G5rqQ77yM5oiR5YCR5Lmf5Y+v5Lul55yL5Yiw6YCZ5LiA5Lqb55Si55Sf542y5Yip55qE576k57WE5piv5LiN5piv5pyJ5oiQ6ZW35oiW6ICF6KGw6YCA55qE6Lao5Yui77yb5pOa5q2k5oiR5YCR5Y+v5Lul6Kit5a6a6KGM6Yq355qE6YeN6bue77yM5rG65a6a6KGM6Yq355qE562W55Wl77yM5ZKM6KaP5YqD6KGM6Yq355qE5bel5YW344CC6Zmk5LqG5LiK6L+w55qE5pWY6L+w57Wx6KiI44CB6ZuG576k5YiG5p6Q44CB5ZKM6LOH5paZ6KaW6Ka65YyW5LmL5aSW77yM5oiR5YCR6YKE5Y+v5Lul5Yip55So6YCZ5Lqb57Ch5Zau55qE5Lqk5piT57SA6YyE77yaDQoNCisgKirlu7rnq4vpoJDmuKzmgKfmqKHlnosqKu+8jOmgkOa4rOavj+S4gOS9jemhp+WuoueahO+8mg0KICAgICsg5L+d55WZ5qmf546HDQogICAgKyDpoJDmnJ/nh5/mlLYNCiAgICArIOe1hOmWk+iuiuaPm+apn+eOhw0KICAgICsg5LiL5qyh5Y+v6IO96LO86LK35pmC6ZaTDQoNCjxicj7liKnnlKjpgJnkuIDkupvpoJDmuKzmiJHlgJHlsLHlj6/ku6XpgLLooYzlhajpnaLlrqLoo73ljJbnmoTvvJogDQoNCisgKirpoaflrqLlg7nlgLznrqHnkIYqKu+8mg0KICAgICsg6aGn5a6i57WC55Sf5YO55YC8DQogICAgKyDpoaflrqLlkLjmlLbnrZbnlaUNCiAgICArIOmhp+WuoueZvOWxleetlueVpQ0KICAgICsg6aGn5a6i5L+d55WZ562W55WlDQoNCisgKirph53lsI3mgKfooYzpircqKu+8mg0KICAgICsg6Kit6KiI6KGM6Yq35pa55qGIDQogICAgKyDpgbjmk4fooYzpirfmlrnmoYgNCiAgICArIOmBuOaTh+ihjOmKt+WwjeixoQ0KDQoNCjxjZW50ZXI+DQoNCiFb5ZyW5LqM44CB6aGn5a6i5YO55YC8566h55CG5rWB56iLXShmaWcvZmlnMi5wbmcpDQoNCjwvY2VudGVyPg0KDQorIOW/g+W+lw0KKyDnj77lnKjnmoTlhazlj7jlt7LntpPlsIfpoaflrqLnlbbkvZzkuIDnqK7os4fnlKLkuoYo6LOH55SiYWth55Sf6LKh5bel5YW3Ke+8jOWPr+imi+WFtumHjeimluS5i+eoi+W6pg0KKyDoqK3oqIjooYzpirflt6XlhbfoiIfpgbjmk4fooYzpirflsI3osaHngrrlhannqK7kuI3lkIzkuYvlsaTmrKENCisg5Yip55So5YiG576k5YGa6KGM6Yq354K656ys5LiA5YCL5bGk5qyh77yM5bCN5LiN5ZCM5bGs5oCn6aGn5a6i5YGa5LiN5ZCM6KGM6Yq35bel5YW3DQorIOmBuOaTh+ihjOmKt+WwjeixoeeCuuesrOS6jOWAi+WxpOasoe+8jOWBh+ioreePvuaciTXnqK7ooYzpirflt6XlhbfvvIzpgJnkupvlt6XlhbfopoHlsI3oqrDnlKg/IOatpOaZguacg+eUqOWIsOmgkOa4rOaAp+aooeWeiw0KKyDliIbnvqQ6IOaKiuebuOWQjOeahOmbhuWQiOWcqOS4gOi1t++8jOS4puioreioiA0KKyDpoJDmuKzmgKfmqKHlnos6IOWFqOmdouWuouijveWMlu+8jOmAmeaUr+W7o+WRiuWBmuWlveS6hu+8jOimgee1puiqsOeciz8NCisg5YWp5bGk5qyh55qE5qC55pys5beu5YilOiDmr4/lgIvpoaflrqLpg73kuI3kuIDmqKMhDQoNCisg55Sx6a+o6a2a5ZyW55+l6YGTOumAmuW4uOiuk+WFrOWPuOeNsuWIqeS5i+mhp+WuouS4jei2hemBjjIwJe+8jOWkp+mDqOWIhuWPquacieaQjeebiuWFqeW5sw0KKyDpoaflrqLlg7nlgLznrqHnkIY6IOmBuOaTh+aAp+WQuOaUtuOAgemBuOaTh+aAp+eZvOWxleOAgemBuOaTh+aAp+S/neeVmQ0KDQorIOmZpOS6huWIhue+pO+8jOS5n+imgeazqOaEj+iqsOWcqOmVt+Wkp+iqsOWcqOe4ruWwjyjli5XmhYvlnJYpDQorIOmBuOWumuaXj+e+pC0+IOioreioiOW3peWFty0+IOW7uueri+aooeWeiyjlsI3oqrDnlKg/KQ0KDQo8YnI+PGhyPg0KDQojIyMjIyBTZXR1cCANCmBgYHtyfQ0KU3lzLnNldGxvY2FsZSgiTENfQUxMIiwiQyIpDQpwYWNrYWdlcyA9IGMoDQogICJkcGx5ciIsImdncGxvdDIiLCJnb29nbGVWaXMiLCJkZXZ0b29scyIsIm1hZ3JpdHRyIiwiY2FUb29scyIsIlJPQ1IiLCJjYVRvb2xzIikNCmV4aXN0aW5nID0gYXMuY2hhcmFjdGVyKGluc3RhbGxlZC5wYWNrYWdlcygpWywxXSkNCmZvcihwa2cgaW4gcGFja2FnZXNbIShwYWNrYWdlcyAlaW4lIGV4aXN0aW5nKV0pIGluc3RhbGwucGFja2FnZXMocGtnKQ0KDQppZighaXMuZWxlbWVudCgiY2hvcmRkaWFnIiwgZXhpc3RpbmcpKQ0KICBkZXZ0b29sczo6aW5zdGFsbF9naXRodWIoIm1hdHRmbG9yL2Nob3JkZGlhZyIpDQpgYGANCg0KIyMjIyMgTGlicmFyeQ0KYGBge3IgZWNobz1ULCBtZXNzYWdlPUYsIGNhY2hlPUYsIHdhcm5pbmc9Rn0NCnJtKGxpc3Q9bHMoYWxsPVQpKQ0Kb3B0aW9ucyhkaWdpdHM9NCwgc2NpcGVuPTEyKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoY2FUb29scykNCmxpYnJhcnkoUk9DUikNCmxpYnJhcnkoZ29vZ2xlVmlzKQ0KbGlicmFyeShjaG9yZGRpYWcpDQpgYGANCjxicj48aHI+DQoNCiMjIyAxIDEuIOizh+aWmeaVtOeQhg0KDQojIyMjIyAxLjEg5Lqk5piT6LOH5paZIChYKQ0KYGBge3J9DQpYID0gcmVhZC50YWJsZSgNCiAgJ3B1cmNoYXNlcy50eHQnLCBoZWFkZXI9RkFMU0UsIHNlcD0nXHQnLCBzdHJpbmdzQXNGYWN0b3JzPUYpDQpuYW1lcyhYKSA9IGMoJ2NpZCcsJ2Ftb3VudCcsJ2RhdGUnKQ0KWCRkYXRlID0gYXMuRGF0ZShYJGRhdGUpDQpzdW1tYXJ5KFgpICAgICAgICAgICAgICAgICAgIyDkuqTmmJPmrKHmlbggNTEyNDMNCmBgYA0KDQpgYGB7ciBmaWcuaGVpZ2h0PTMsIGZpZy53aWR0aD03LjJ9DQpwYXIoY2V4PTAuOCkNCmhpc3QoWCRkYXRlLCAieWVhcnMiLCBsYXM9MiwgZnJlcT1ULCB4bGFiPSIiLCBtYWluPSJOby4gVHJhbnNhY3Rpb24gYnkgWWVhciIpDQpgYGANCg0KKyDmoLzlvI/ovYnmj5vmraPnorrlvozvvIzljbPlj6/nlKhoaXN0KFgkZGF0ZSwgInllYXJzIiDnnIvlubTku73kuYvplpPpl5zkv4INCg0KDQpgYGB7cn0NCm5fZGlzdGluY3QoWCRjaWQpICAgICAgICAgICAjIOmhp+WuouaVuCAxODQxNw0KYGBgDQoNCisg6Iez55uu5YmN54K65q2i55Sx5pWY6L+w57Wx6KiI5Y+v55yL5Ye6OiDkuqTmmJPmrKHmlbjntIQ16JCs562G77yM6aGn5a6i57SEMS446JCs5Lq6DQorIOS7o+ihqOW5s+Wdh+S4gOS6uue0hOa2iOiyuzJ+M+asoQ0KDQojIyMjIyAxLjIg6aGn5a6i6LOH5paZIChBKQ0KYGBge3J9DQpBID0gWCAlPiUgDQogIG11dGF0ZShkYXlzID0gYXMuaW50ZWdlcihhcy5EYXRlKCIyMDE2LTAxLTAxIikgLSBkYXRlKSkgJT4lIA0KICBncm91cF9ieShjaWQpICU+JSBzdW1tYXJpc2UoDQogICAgcmVjZW50ID0gbWluKGRheXMpLCAgICAgIyDmnIDov5Hos7zosrfot53ku4rlpKnmlbgNCiAgICBmcmVxID0gbigpLCAgICAgICAgICAgICAjIOizvOiyt+asoeaVuA0KICAgIG1vbmV5ID0gbWVhbihhbW91bnQpLCAgICMg5bmz5Z2H6LO86LK36YeR6aGNDQogICAgc2VuaW9yID0gbWF4KGRheXMpLCAgICAgIyDnrKzkuIDmrKHos7zosrfot53ku4rlpKnmlbgNCiAgICBzaW5jZSA9IG1pbihkYXRlKSAgICAgICAjIOesrOS4gOasoeizvOiyt+aXpeacnw0KICApICU+JSBkYXRhLmZyYW1lDQpgYGANCisgZGF5czog6IiH5YGa5pyf5Lit56u26LO95pmC55u45ZCM5LmL5qaC5b+177yM6JeJ55Sx5pel5pyf5beu566X5Ye65aSp5pW4DQorIEE6IOmhp+Wuouizh+aWmeS5i2RhdGEgZnJhbWUNCg0KIyMjIyMgMS40IOmhp+Wuouizh+aWmeaRmOimgQ0KYGBge3J9DQpzdW1tYXJ5KEEpDQpgYGANCg0KIyMjIyMgMS41IOiuiuaVuOeahOWIhuW4g+eLgOazgQ0KYGBge3IgZmlnLmhlaWdodD00LCBmaWcud2lkdGg9OH0NCnAwID0gcGFyKGNleD0wLjgsIG1mcm93PWMoMiwyKSwgbWFyPWMoMywzLDQsMikpDQpoaXN0KEEkcmVjZW50LDIwLG1haW49InJlY2VuY3kiLHlsYWI9IiIseGxhYj0iIikNCmhpc3QocG1pbihBJGZyZXEsIDEwKSwwOjEwLG1haW49ImZyZXF1ZW5jeSIseWxhYj0iIix4bGFiPSIiKQ0KaGlzdChBJHNlbmlvciwyMCxtYWluPSJzZW5pb3JpdHkiLHlsYWI9IiIseGxhYj0iIikNCmhpc3QobG9nKEEkbW9uZXksMTApLG1haW49ImxvZyhtb25leSkiLHlsYWI9IiIseGxhYj0iIikNCmBgYA0KDQorIOeUsXJlY2VuY3nlnJY6IOacgOW3pumCiuWPr+eci+WHuuacieS6m+a0u+i6jemhp+WuouaMgee6jOWcqOa2iOiyuw0KKyBmcmVxdWVuY3k6IOmbouaVo+WIhuW4g++8jOWcluS4rei2hemBjjEw55u05o6l5YWo6YOo5Yqg57i95Zyo5LiA6LW3DQorIOeUsXNlbmlvcml0eeWcljrlj6/nnIvlh7rlk6rlgIvmmYLmnJ/lkLjmlLbovIPlpJrmlrDpoaflrqINCisgbG9nMS4157SEPTMwIO+8jCBsb2cyLjXntIQ9MzAwIOS7peatpOmhnuaOqA0KDQo8YnI+PGhyPg0KDQojIyMgMi4g5bGk57Sa5byP6ZuG576k5YiG5p6QDQoNCiMjIyMjIDIuMSBSRk3poaflrqLliIbnvqQNCmBgYHtyfQ0Kc2V0LnNlZWQoMTExKQ0KQSRncnAgPSBrbWVhbnMoc2NhbGUoQVssMjo0XSksMTApJGNsdXN0ZXINCnRhYmxlKEEkZ3JwKSAgIyDml4/nvqTlpKflsI8NCmBgYA0KDQorIOWBmuWujOmbhue+pDrlhYjnnIvml4/nvqTlpKflsI/kuYvmlZjov7DntbHoqIjvvIzlho3ljrvkuobop6PlhbblsazmgKcNCg0KIyMjIyMgMi4yIOmhp+Wuoue+pOe1hOWxrOaApw0KYGBge3IgZmlnLmhlaWdodD00LjUsIGZpZy53aWR0aD04fQ0KZ3JvdXBfYnkoQSwgZ3JwKSAlPiUgc3VtbWFyaXNlKA0KICByZWNlbnQ9bWVhbihyZWNlbnQpLCANCiAgZnJlcT1tZWFuKGZyZXEpLCANCiAgbW9uZXk9bWVhbihtb25leSksIA0KICBzaXplPW4oKSApICU+JSANCiAgbXV0YXRlKCByZXZlbnVlID0gc2l6ZSptb25leS8xMDAwICkgICU+JSANCiAgZmlsdGVyKHNpemUgPiAxKSAlPiUgDQogIGdncGxvdChhZXMoeD1mcmVxLCB5PW1vbmV5KSkgKw0KICBnZW9tX3BvaW50KGFlcyhzaXplPXJldmVudWUsIGNvbD1yZWNlbnQpLGFscGhhPTAuNSkgKw0KICBzY2FsZV9zaXplKHJhbmdlPWMoNCwzMCkpICsNCiAgc2NhbGVfY29sb3JfZ3JhZGllbnQobG93PSJncmVlbiIsaGlnaD0icmVkIikgKw0KICBzY2FsZV94X2xvZzEwKCkgKyBzY2FsZV95X2xvZzEwKGxpbWl0cz1jKDMwLDMwMDApKSArIA0KICBnZW9tX3RleHQoYWVzKGxhYmVsID0gc2l6ZSApLHNpemU9MykgKw0KICB0aGVtZV9idygpICsgZ3VpZGVzKHNpemU9RikgKw0KICBsYWJzKHRpdGxlPSJDdXN0b21lciBTZWdlbWVudHMiLA0KICAgICAgIHN1YnRpdGxlPSIoYnViYmxlX3NpemU6cmV2ZW51ZV9jb250cmlidXRpb247IHRleHQ6Z3JvdXBfc2l6ZSkiLA0KICAgICAgIGNvbG9yPSJSZWNlbmN5IikgKw0KICB4bGFiKCJGcmVxdWVuY3kgKGxvZykiKSArIHlsYWIoIkF2ZXJhZ2UgVHJhbnNhY3Rpb24gQW1vdW50IChsb2cpIikNCmBgYA0KDQorIOazoeazoeWcluWEqum7njogeOi7uOOAgXnou7jjgIHms6Hms6HlpKflsI/jgIHpoY/oibLvvIzoh7PlsJHlj6/nnIvlh7o05YCL5bGs5oCnLT7lv4XpoIjlloTnlKghISENCisg5q2k5rOh5rOh5ZyW57y66bueOiDpnZzmhYvnnIvkuI3lh7rlhbbmlLnororpgY7nqIsNCg0KPGJyPjxocj4NCg0KIyMjIDMuIOimj+WJh+WIhue+pA0KDQorIOeCuuS9leimgeeUqOimj+WJh+WIhue+pD8g5Zug54K6a21lYW5z5pa55rOV5Lit5pyf5peP576k5ZG95ZCN5Lim54Sh6KaP5b6L77yM5LiU5q+P5pyf5YiG5aW955qE5peP576k57WE5oiQ5Y+v6IO96YO95LiN55u45ZCM44CC54K65LqG5YGa5Ye65YuV5oWL5ZyW5b2i5Lim55yL5Ye65YW26Zqo5pmC6ZaT5LmL5pS56K6K77yM5b+F6aCI5L2/55So6KaP5YmH5YiG576k44CCDQoNCiMjIyMjIDMuMSDpoaflrqLliIbnvqTopo/liYcNCmBgYHtyfQ0KU1RTID0gYygiTjEiLCJOMiIsIlIxIiwiUjIiLCJTMSIsIlMyIiwiUzMiKQ0KU3RhdHVzID0gZnVuY3Rpb24ocngsZngsbXgsc3gsSykge2ZhY3RvcigNCiAgaWZlbHNlKHN4IDwgMipLLA0KICAgICAgICAgaWZlbHNlKGZ4Km14ID4gNTAsICJOMiIsICJOMSIpLA0KICAgICAgICAgaWZlbHNlKHJ4IDwgMipLLA0KICAgICAgICAgICAgICAgIGlmZWxzZShzeC9meCA8IDAuNzUqSywiUjIiLCJSMSIpLA0KICAgICAgICAgICAgICAgIGlmZWxzZShyeCA8IDMqSywiUzEiLA0KICAgICAgICAgICAgICAgICAgICAgICBpZmVsc2UocnggPCA0KkssIlMyIiwiUzMiKSkpKSwgU1RTKX0NCmBgYA0KDQo8Y2VudGVyPg0KDQohW+WcluS4ieOAgemhp+WuouWIhue+pOimj+WJh10oZmlnL2ZpZzMuamZpZikNCg0KPC9jZW50ZXI+DQoNCisg6Ieq5bex5YiG576k77yM5q+P5LiA5pyf57WQ5p2f6LyD5pa55L6/6KeA5a+fDQoNCiMjIyMjIDMuMiDlubPlnYfos7zosrfpgLHmnJ8NCmBgYHtyfQ0KSyA9IGFzLmludGVnZXIoc3VtKEEkc2VuaW9yW0EkZnJlcT4xXSkgLyBzdW0oQSRmcmVxW0EkZnJlcT4xXSkpOyBLDQpgYGANCuWbnuizvOmhp+WuoueahOW5s+Wdh+izvOiyt+mAseacnyBgSyA9IDUyMSBkYXlzYA0KDQojIyMjIyAzLjMg5ruR5YuV6LOH5paZ56qX5qC8DQpgYGB7cn0NClkgPSBsaXN0KCkgICAgICAgICAgICAgICMg5bu656uL5LiA5YCL56m655qETElTVA0KZm9yKHkgaW4gMjAxMDoyMDE1KSB7ICAgIyDmr4/lubTlubTlupXlsIfpoaflrqLos4fmlpnlvZnmlbTmiJDkuIDlgIvos4fmlpnmoYYNCiAgRCA9IGFzLkRhdGUocGFzdGUwKGMoeSwgeS0xKSwiLTEyLTMxIikpICMg55W25pyf44CB5YmN5pyf55qE5pyf5pyr5pel5pyfIA0KICBZW1twYXN0ZTAoIlkiLHkpXV0gPSBYICU+JSAgICAgICAgIyDlvp7kuqTmmJPos4fmlpnlgZrotbcNCiAgICBmaWx0ZXIoZGF0ZSA8PSBEWzFdKSAlPiUgICAgICAgICMg5bCH6LOH5paZ5YiH6b2K5Yiw5pyf5pyr5pel5pyfDQogICAgbXV0YXRlKGRheXMgPSAxICsgYXMuaW50ZWdlcihEWzFdIC0gZGF0ZSkpICU+JSAgICMg5Lqk5piT6Led5pyf5pyr5aSp5pW4DQogICAgZ3JvdXBfYnkoY2lkKSAlPiUgc3VtbWFyaXNlKCAgICAjIOS+nemhp+WuouW9mee4vSAuLi4NCiAgICAgIHJlY2VudCA9IG1pbihkYXlzKSwgICAgICAgICAgICMgICDmnIDlvozkuIDmrKHos7zosrfot53mnJ/mnKvlpKnmlbggICANCiAgICAgIGZyZXEgPSBuKCksICAgICAgICAgICAgICAgICAgICMgICDos7zosrfmrKHmlbggKOiHs+acn+acq+eCuuatoikgICANCiAgICAgIG1vbmV5ID0gbWVhbihhbW91bnQpLCAgICAgICAgICMgICDlubPlnYfos7zosrfph5HpoY0gKOiHs+acn+acq+eCuuatoikNCiAgICAgIHNlbmlvciA9IG1heChkYXlzKSwgICAgICAgICAgICMgICDnrKzkuIDmrKHos7zosrfot53mnJ/mnKvlpKnmlbgNCiAgICAgIHN0YXR1cyA9IFN0YXR1cyhyZWNlbnQsZnJlcSxtb25leSxzZW5pb3IsSyksICAjIOacn+acq+eLgOaFiw0KICAgICAgc2luY2UgPSBtaW4oZGF0ZSksICAgICAgICAgICAgICAgICAgICAgICMg56ys5LiA5qyh6LO86LK35pel5pyfDQogICAgICB5X2ZyZXEgPSBzdW0oZGF0ZSA+IERbMl0pLCAgICAgICAgICAgICAgIyDnlbbmnJ/os7zosrfmrKHmlbgNCiAgICAgIHlfcmV2ZW51ZSA9IHN1bShhbW91bnRbZGF0ZSA+IERbMl1dKSAgICAjIOeVtuacn+izvOiyt+mHkemhjQ0KICAgICkgJT4lIGRhdGEuZnJhbWUgfQ0KYGBgDQoNCmBgYHtyfQ0KaGVhZChZJFkyMDE1KQ0KYGBgDQoNCiMjIyMjIDMuNCDmr4/lubTlubTlupXnmoTntK/oqIjpoaflrqLkurrmlbgNCmBgYHtyfQ0Kc2FwcGx5KFksIG5yb3cpDQpgYGANCg0KKyDnlLFzYXBwbHnliJflh7psaXN05pa55L6/6KeA5a+fDQoNCiMjIyMjIDMuNSDml4/nvqTlpKflsI/ororljJbotqjli6INCmBgYHtyIGZpZy5oZWlnaHQ9NCwgZmlnLndpZHRoPTh9DQpjb2xzID0gYygiZ29sZCIsIm9yYW5nZSIsImJsdWUiLCJncmVlbiIsInBpbmsiLCJtYWdlbnRhIiwiZGFya3JlZCIpDQpzYXBwbHkoWSwgZnVuY3Rpb24oZGYpIHRhYmxlKGRmJHN0YXR1cykpICU+JSBiYXJwbG90KGNvbD1jb2xzKQ0KbGVnZW5kKCJ0b3BsZWZ0IixyZXYoU1RTKSxmaWxsPXJldihjb2xzKSkNCmBgYA0KDQorIOacgOS4iumdouWSluWVoeiJsueahOayieedoemhp+Wuoui2iuS+hui2iuWkmi0+IOWboOeCuuaykuacieioreWumuedoeS6huWkmuS5heS7peW+jOiHquWLleWJlOmZpA0KDQojIyMjIyAzLjYg5peP576k5bGs5oCn5YuV5oWL5YiG5p6QDQpgYGB7cn0NCkN1c3RTZWdtZW50cyA9IGRvLmNhbGwocmJpbmQsIGxhcHBseShZLCBmdW5jdGlvbihkKSB7DQogIGdyb3VwX2J5KGQsIHN0YXR1cykgJT4lIHN1bW1hcmlzZSgNCiAgICBhdmVyYWdlX2ZyZXF1ZW5jeSA9IG1lYW4oZnJlcSksDQogICAgYXZlcmFnZV9hbW91bnQgPSBtZWFuKG1vbmV5KSwNCiAgICB0b3RhbF9yZXZlbnVlID0gc3VtKHlfcmV2ZW51ZSksDQogICAgdG90YWxfbm9fb3JkZXJzID0gc3VtKHlfZnJlcSksDQogICAgYXZlcmFnZV9yZWNlbmN5ID0gbWVhbihyZWNlbnQpLA0KICAgIGF2ZXJhZ2Vfc2VuaW9yaXR5ID0gbWVhbihzZW5pb3IpLA0KICAgIGdyb3VwX3NpemUgPSBuKCkNCiAgKX0pKSAlPiUgdW5ncm91cCAlPiUgDQogIG11dGF0ZSh5ZWFyPXJlcCgyMDEwOjIwMTUsIGVhY2g9NykpICU+JSBkYXRhLmZyYW1lDQpoZWFkKEN1c3RTZWdtZW50cykNCmBgYA0KDQpgYGB7ciBldmFsPUZ9DQpwbG90KCBndmlzTW90aW9uQ2hhcnQoDQogIEN1c3RTZWdtZW50cywgInN0YXR1cyIsICJ5ZWFyIiwNCiAgb3B0aW9ucz1saXN0KHdpZHRoPTkwMCwgaGVpZ2h0PTYwMCkgKSApDQpgYGANCisg6YCy5YWlY2hyb21l5b6MLT7lj7PpjbXoqK3lrpotPumAsumaji0+5a6J5YWo5oCnLT7lhaflrrnoqK3lrpotPmZsYXNo6bue6ZaL5paw5aKeMTI3LjAuMC4xDQorIOWPr+aMh+WumuaXj+e+pOeci+WFtuenu+WLleS5i+i7jOi3oQ0KDQo8Y2VudGVyPg0KDQohW+WcluWbm+OAgemhp+WuouWIhue+pOimj+WJh10oZmlnL2ZpZzQuamZpZikNCg0KPC9jZW50ZXI+DQoNCg0KIyMjIyMgMy43IOaXj+e+pOWxrOaAp+WLleaFi+WIhuaekA0KYGBge3J9DQpkZiA9IG1lcmdlKFkkWTIwMTRbLGMoMSw2KV0sIFkkWTIwMTVbLGMoMSw2KV0sDQogICAgICAgICAgIGJ5PSJjaWQiLCBhbGwueD1UKQ0KdHggPSB0YWJsZShkZiRzdGF0dXMueCwgZGYkc3RhdHVzLnkpICU+JSANCiAgYXMuZGF0YS5mcmFtZS5tYXRyaXgoKSAlPiUgYXMubWF0cml4KCkNCnR4ICAgICMg5rWB6YeP55+p6ZmjDQpgYGANCg0KKyDnlLHmtYHph4/nn6npmaPlj6/nnIvlh7oyMDE05bGs5pa85p+Q5peP576k55qE5Lq65ZyoMjAxNeiuiuaIkOS7gOm6vOaXj+e+pA0KDQpgYGB7cn0NCnR4ICU+JSBwcm9wLnRhYmxlKDEpICU+JSByb3VuZCgzKSAgICMg5rWB6YeP55+p6ZmjKCUpDQpgYGANCg0KIyMjIyMgMy44IOS6kuWLleW8j+a1gemHj+WIhuaekA0KYGBge3J9DQpjaG9yZGRpYWcodHgsIGdyb3VwQ29sb3JzPWNvbHMpDQpgYGANCg0KKyDlj6/ms6jmhI/liLDnnaHokZfnmoTkurrkuI3mmK/nubznuoznnaHlsLHmmK/nnaHlvpfmm7Tmt7EhDQorIOaJgOS7peWcqOmhp+WuouedoeW+l+W+iOayieS5i+WJjeW/hemgiOWBmuWHuuWPjeaHiQ0KDQohW10oZmlnL2Nob3JkLmpwZykNCg0KPGJyPjxocj4NCg0KIyMjIDQuIOW7uueri+aooeWeiw0KDQrlnKjpgJnlgIvmoYjkvovoo6HpnaLvvIzmiJHlgJHnmoTos4fmlpnmmK/mlLbliLBZMjAxNeW5tOW6le+8jOaJgOS7peaIkeWAkeWPr+S7peWBh+ioreePvuWcqOeahOaZgumWk+aYr1kyMDE15bm05bqV77yM5oiR5YCR5oOz6KaB55So54++5pyJ55qE6LOH5paZ5bu656uL5qih5Z6L77yM5L6G6aCQ5ris5q+P5LiA5L2N6aGn5a6i77yaDQoNCisg5ZyoWTIwMTblubTmmK/lkKbmnIPkvobos7zosrcgKOS/neeVmeeOh++8mlJldGFpbikNCisg5aW55L6G6LO86LK355qE6Kmx77yM5pyD6LK35aSa5bCR6YyiICjos7zosrfph5HpoY3vvJpSZXZlbnVlKQ0KDQrkvYbmmK/vvIzmiJHlgJHkuKbmspLmnIlZMjAxNueahOizh+aWme+8jOeCuuS6huimgeW7uueri+aooeWei++8jOaIkeWAkemcgOimgeWFiOaKiuaZgumWk+WbnuaOqOS4gOacn++8jOS5n+WwseaYr+iqqu+8mg0KDQorIOeUqFkyMDE05bm05bqV5Lul5YmN55qE6LOH5paZ5pW055CG5Ye66aCQ5ris6K6K5pW4KFgpIA0KKyDnlKhZMjAxNeW5tOeahOizh+aWmeaVtOeQhuWHuuebruaomeiuiuaVuChZKSANCg0K5YGH5aaCWTIwMTbnmoTmg4Xms4Eo6LefWTIwMTXmr5Qp5rKS5pyJ5aSq5aSn55qE6K6K5YyW55qE6Kmx77yM5o6l5LiL5L6G5oiR5YCR5bCx5Y+v5LulDQoNCisg5L2/55So6Kmy5qih5Z6L77yM5LulWTIwMTXlubTlupXnmoTos4fmlpnvvIzpoJDmuKxZMjAxNueahOeLgOazgQ0KDQojIyMjIyA0LjEg5rqW5YKZ6LOH5paZDQrmiJHlgJHnlKhZMjAxNOW5tOW6leeahOizh+aWmeWBmuiHquiuiuaVuO+8jFkyMDE15bm055qE6LOH5paZ5YGa5oeJ6K6K5pW4DQoNCmBgYHtyfQ0KQ1ggPSBsZWZ0X2pvaW4oWSRZMjAxNCwgWSRZMjAxNVssYygxLDgsOSldLCBieT0iY2lkIikNCmhlYWQoQ1gpDQpgYGANCg0KKyBsZWZ0X2pvaW4oWSRZMjAxNCwgWSRZMjAxNVssYygxLDgsOSldOiDmiorlvozpnaLnmoQ4OeashOaKhOWIsOWJjemdog0KKyDlhanpgorpg73opoHmnInmraRjaWTmiY3mnIPmioTlhaUNCg0KYGBge3J9DQpuYW1lcyhDWClbODoxMV0gPSBjKCJmcmVxMCIsInJldmVudWUwIiwiUmV0YWluIiwgIlJldmVudWUiKQ0KQ1gkUmV0YWluID0gQ1gkUmV0YWluID4gMA0KaGVhZChDWCkNCmBgYA0KDQpgYGB7cn0NCnRhYmxlKENYJFJldGFpbikgJT4lIHByb3AudGFibGUoKSAgIyDlubPlnYfkv53nlZnmqZ/njocgPSAyMi41NCUNCmBgYA0KDQojIyMjIyA0LjIg5bu656uL6aGe5Yil5qih5Z6LDQpgYGB7cn0NCm1SZXQgPSBnbG0oUmV0YWluIH4gLiwgQ1hbLGMoMjozLDYsODoxMCldLCBmYW1pbHk9Ymlub21pYWwoKSkNCnN1bW1hcnkobVJldCkNCmBgYA0KDQojIyMjIyA0LjMg5Lyw6KiI6aGe5Yil5qih5Z6L55qE5rqW56K65oCnDQoNCisg5pyD5LiN5pyD5L6G6LK3DQoNCmBgYHtyfQ0KcHJlZCA9IHByZWRpY3QobVJldCx0eXBlPSJyZXNwb25zZSIpDQp0YWJsZShwcmVkPjAuNSxDWCRSZXRhaW4pIA0KIyDmt7fmt4bnn6npmaMgKENvbmZ1c2lvbiBNYXRyaXgpICANCmBgYA0KYGBge3J9DQp0YWJsZShwcmVkPjAuNSxDWCRSZXRhaW4pICU+JSANCiAge3N1bShkaWFnKC4pKS9zdW0oLil9ICAgICAgICAgICAgIyDmraPnorrnjocoQUNDKTogODUuMTklIA0KYGBgDQpgYGB7cn0NCmNvbEFVQyhwcmVkLENYJFJldGFpbikgICAgICAgICAgICAgIyDovq/orZjnjocoQVVDKTogODcuOTIlDQpgYGANCmBgYHtyIGZpZy5oZWlnaHQ9NCwgZmlnLndpZHRoPTR9DQpwcmVkaWN0aW9uKHByZWQsIENYJFJldGFpbikgJT4lICAgICMgUk9DIENVUlZFIA0KICBwZXJmb3JtYW5jZSgidHByIiwgImZwciIpICU+JSANCiAgcGxvdChwcmludC5jdXRvZmZzLmF0PXNlcSgwLDEsMC4xKSkNCmBgYA0KDQojIyMjIyA0LjQg5bu656uL5pW46YeP5qih5Z6LDQoNCisg5YGH5aaC5pyJ5L6G6LK35pyD6LK35aSa5bCRPw0KKyDlhYhzdWJzZXToqr/kuI3kvobosrfnmoQNCg0KYGBge3J9DQpkeCA9IHN1YnNldChDWCwgUmV2ZW51ZSA+IDApICAjIOWPquWwjeacieS+huizvOiyt+eahOS6uuWBmuaooeWeiw0KbVJldiA9IGxtKGxvZyhSZXZlbnVlKSB+IHJlY2VudCArIGZyZXEgKyBsb2coMSttb25leSkgKyBzZW5pb3IgKw0KICAgICAgICAgIHN0YXR1cyArIGZyZXEwICsgbG9nKDErcmV2ZW51ZTApLCBkeCkgIA0Kc3VtbWFyeShtUmV2KSAgICAgICAgICAgICAgICAgIyDliKTlrprkv4LmlbjvvJpSMiA9IDAuNzEzDQpgYGANCmBgYHtyIGZpZy5oZWlnaHQ9NC41LCBmaWcud2lkdGg9NC41fQ0KcGxvdChsb2coZHgkUmV2ZW51ZSksIHByZWRpY3QobVJldiksIGNvbD0ncGluaycsIGNleD0wLjY1KQ0KYWJsaW5lKDAsMSxjb2w9J3JlZCcpIA0KYGBgDQoNCisg57SF57ea54K66aCQ5ris5YC877yM57KJ57SF5ZyI54K65a+m6Zqb5YC8DQoNCjxicj48aHI+DQoNCiMjIyA1LiDkvLDoqIjpoaflrqLntYLnlJ/lg7nlgLwNCg0KIyMjIyMgNS4xIFkyMDE255qE6aCQ5ris5YC8DQrkvb/nlKjmqKHlnovlsI1ZMjAxNeW5tOW6leeahOizh+aWmeWBmumgkOa4rO+8jOWwjeizh+aWmeS4reeahOavj+S4gOS9jemhp+Wuou+8jOmgkOa4rOWlueWAkeWcqFkyMDE255qE5L+d55WZ546H5ZKM6LO86LK36YeR6aGN44CCDQpgYGB7cn0NCkNYID0gWSRZMjAxNQ0KbmFtZXMoQ1gpWzg6OV0gPSBjKCJmcmVxMCIsInJldmVudWUwIikNCg0KIyDpoJDmuKxZMjAxNuS/neeVmeeOhw0KQ1gkUHJvYlJldGFpbiA9IHByZWRpY3QobVJldCxDWCx0eXBlPSdyZXNwb25zZScpDQoNCiMg6aCQ5risWTIwMTbos7zosrfph5HpoY0NCkNYJFByZWRSZXZlbnVlID0gZXhwKHByZWRpY3QobVJldixDWCkpDQpgYGANCg0KYGBge3IgZmlnLmhlaWdodD0yLjUsIGZpZy53aWR0aD04fQ0KcGFyKG1mcm93PWMoMSwyKSwgbWFyPWMoNCwzLDMsMiksIGNleD0wLjgpDQpoaXN0KENYJFByb2JSZXRhaW4sbWFpbj0iUHJvYlJldGFpbiIsIHlsYWI9IiIpDQpoaXN0KGxvZyhDWCRQcmVkUmV2ZW51ZSwxMCksbWFpbj0ibG9nKFByZWRSZXZlbnVlKSIsIHlsYWI9IiIpDQpgYGANCjxicj4NCg0KIyMjIyMgNS4yIOS8sOioiOmhp+Wuoue1gueUn+WDueWAvChDTFYpDQoNCjxjZW50ZXI+6aGn5a6iJGkk55qE57WC55Sf5YO55YC8PC9jZW50ZXI+DQoNCiQkIFZfaSA9IFxzdW1fe3Q9MH1eTiBnIFx0aW1lcyBtX2kgXGZyYWN7cl9pXnR9eygxK2QpXnR9ID0gZyBcdGltZXMgbV9pIFxzdW1fe3Q9MH1eTiAoXGZyYWN7cl9pfXsxK2R9KV50ICAkJA0KDQo8Y2VudGVyPiRtX2kk44CBJHJfaSTvvJrpoaflrqIkaSTnmoTpoJDmnJ8o5q+P5pyfKeeHn+aUtuiyoueNu+OAgeS/neeVmeapn+eOhzwvY2VudGVyPg0KDQo8Y2VudGVyPiRnJOOAgSRkJO+8muWFrOWPuOeahCjnqIXliY0p54ef5qWt5Yip5r2k5Yip546H44CB6LOH6YeR5oiQ5pysPC9jZW50ZXI+DQoNCmBgYHtyfQ0KZyA9IDAuNSAgICMgKOeoheWJjSnnjbLliKnnjocNCk4gPSA1ICAgICAjIOacn+aVuCA9IDUNCmQgPSAwLjEgICAjIOWIqeeOhyA9IDEwJQ0KQ1gkQ0xWID0gZyAqIENYJFByZWRSZXZlbnVlICogcm93U3VtcyhzYXBwbHkoDQogIDA6TiwgZnVuY3Rpb24oaSkgKENYJFByb2JSZXRhaW4vKDErZCkpXmkgKSApDQoNCnN1bW1hcnkoQ1gkQ0xWKQ0KYGBgDQoNCmBgYHtyIGZpZy5oZWlnaHQ9Mi41LCBmaWcud2lkdGg9Ny4yfQ0KcGFyKG1hcj1jKDIsMiwzLDEpLCBjZXg9MC44KQ0KaGlzdChsb2coQ1gkQ0xWLDEwKSwgeGxhYj0iIiwgeWxhYj0iIikNCmBgYA0KDQojIyMjIyA1LjMg5q+U6LyD5ZCE5peP576k55qE5YO55YC8DQoNCmBgYHtyfQ0KIyDlkITml4/nvqTnmoTlubPlnYfnh5/mlLbosqLnjbvjgIHkv53nlZnmqZ/njofjgIHntYLnlJ/lg7nlgLwNCnNhcHBseShDWFssMTA6MTJdLCB0YXBwbHksIENYJHN0YXR1cywgbWVhbikNCmBgYA0KDQoNCmBgYHtyfQ0KcGFyKG1hcj1jKDMsMyw0LDIpLCBjZXg9MC44KQ0KYm94cGxvdChsb2coQ0xWKX5zdGF0dXMsIENYLCBtYWluPSJDTFYgYnkgR3JvdXBzIikNCg0KYGBgDQoNCisg5q+P5YCL5peP576k6YKE5piv5pyJ5b6I5aSa5Y+z5bC+DQoNCjxicj48aHI+DQoNCiMjIyA2LiDoqK3lrprooYzpirfnrZbnlaXjgIHopo/lioPooYzpirflt6XlhbcNCg0KPGJyPjxocj4NCg0KIyMjIDcuIOmBuOaTh+ihjOmKt+WwjeixoQ0KDQrntablrprmn5DkuIDooYzpirflt6XlhbfnmoTmiJDmnKzlkozpoJDmnJ/mlYjnm4rvvIzpgbjmk4flj6/ku6Xmlr3ooYzpgJnpoIXlt6XlhbfnmoTlsI3osaHjgIIgDQoNCiMjIyMjIDcuMSDlsI1SMuaXj+e+pOmAsuihjOS/neeVmQ0KUjLml4/nvqTnmoTpoJDmuKzkv53nlZnnjoflkozos7zosrfph5HpoY0NCmBgYHtyIGZpZy5oZWlnaHQ9Mi41LCBmaWcud2lkdGg9OH0NCnBhcihtZnJvdz1jKDEsMiksIG1hcj1jKDQsMywzLDIpLCBjZXg9MC44KQ0KaGlzdChDWCRQcm9iUmV0YWluW0NYJHN0YXR1cz09IlIyIl0sbWFpbj0iUHJvYlJldGFpbiIseGxhYj0iIikNCmhpc3QobG9nKENYJFByZWRSZXZlbnVlW0NYJHN0YXR1cz09IlIyIl0sMTApLG1haW49IlByZWRSZXZlbnVlIix4bGFiPSIiKQ0KYGBgDQoNCiMjIyMjIDcuMiDkvLDoqIjpoJDmnJ/loLHphawNCuWBh+ioreihjOmKt+W3peWFt+eahOaIkOacrOWSjOmgkOacn+aViOebiueCug0KYGBge3J9DQpjb3N0ID0gMTAgICAgICAgICMg5oiQ5pysDQplZmZlY3QgPSAwLjc1ICAgICMg5pWI55uK77ya5LiL5LiA5pyf55qE6LO86LK35qmf546HDQpgYGANCg0K5Lyw6KiI6YCZ6aCF6KGM6Yq35bel5YW35bCN5q+P5LiA5L2NUjLpoaflrqLnmoTpoJDmnJ/loLHphawNCmBgYHtyfQ0KVGFyZ2V0ID0gc3Vic2V0KENYLCBzdGF0dXM9PSJSMiIpDQpUYXJnZXQkRXhwUmV0dXJuID0gKGVmZmVjdCAtIFRhcmdldCRQcm9iUmV0YWluKSAqIFRhcmdldCRQcmVkUmV2ZW51ZSAtIGNvc3QNCnN1bW1hcnkoVGFyZ2V0JEV4cFJldHVybikNCmBgYA0K6YCZ5LiA6aCF5bel5YW35bCNUjLpoaflrqLnmoTpoJDmnJ/loLHphazmmK/osqDnmoQNCg0KIyMjIyMgNy4zIOmBuOaTh+ihjOmKt+WwjeixoQ0K5L2G5piv77yM5oiR5YCR6YKE5piv5Y+v5Lul5oyR5Ye66Kix5aSa6aCQ5pyf5aCx6YWs5b6I5aSn55qE6KGM6Yq35bCN6LGhDQpgYGB7cn0NClRhcmdldCAlPiUgYXJyYW5nZShkZXNjKEV4cFJldHVybikpICU+JSBzZWxlY3QoY2lkLCBFeHBSZXR1cm4pICU+JSBoZWFkKDE1KQ0KYGBgDQoNCmBgYHtyfQ0Kc3VtKFRhcmdldCRFeHBSZXR1cm4gPiAwKSAgICAgICAgICAgICAgICAgIyDlj6/lr6bmlr3lsI3osaHvvJoyNTgNCmBgYA0K5ZyoUjLkuYvkuK3vvIzmnIkyNTjkurrnmoTpoJDmnJ/loLHphazlpKfmlrzpm7bvvIzlpoLmnpzlsI3pgJkyNTjkurrkvb/nlKjpgJnpoIXlt6XlhbfvvIzmiJHlgJHnmoTmnJ/mnJvloLHphazmmK/vvJoNCmBgYHtyfQ0Kc3VtKFRhcmdldCRFeHBSZXR1cm5bVGFyZ2V0JEV4cFJldHVybiA+IDBdKSAgICMg6aCQ5pyf5aCx6YWs77yaNjQ2NA0KYGBgDQoNCiMjIyMjIFFVSVo6DQrmiJHlgJHlj6/ku6Xnrpflh7rlsI3miYDmnInnmoTml4/nvqTlr6bmlr3pgJnpoIXlt6XlhbfnmoTmnJ/mnJvloLHphawgLi4uDQpgYGB7cn0NClRhcmdldCA9IENYDQpUYXJnZXQkRXhwUmV0dXJuID0gKGVmZmVjdCAtIFRhcmdldCRQcm9iUmV0YWluKSAqIFRhcmdldCRQcmVkUmV2ZW51ZSAtIGNvc3QNCmZpbHRlcihUYXJnZXQsIFRhcmdldCRFeHBSZXR1cm4gPiAwKSAlPiUNCiAgZ3JvdXBfYnkoc3RhdHVzKSAlPiUgc3VtbWFyaXNlKA0KICAgIE5vLlRhcmdldCA9IG4oKSwNCiAgICBBdmdST0kgPSBtZWFuKEV4cFJldHVybiksDQogICAgVG90YWxST0kgPSBzdW0oRXhwUmV0dXJuKSApICU+JSBkYXRhLmZyYW1lDQpgYGANCumAmeWAi+e1kOaenOaYr+WQiOeQhueahOWXju+8nyDkvaDmg7PopoHmgI7purzkv67mraPpgJnpoIXliIbmnpDnmoTnqIvluo/lkaLvvJ8NCg0KKyDlkIjnkIbvvIzlm6Dngrrmr4/lgIvml4/nvqTpg73mnInkuI3lkIznmoTlsazmgKcNCisNCg0KPGJyPjxicj48aHI+DQoNCiMjIyA4LiDntZDoq5YNCg0K5aaC5p6c5L2g5Y+q5pyJ6aGn5a6iSUTjgIHkuqTmmJPml6XmnJ/jgIHkuqTmmJPph5HpoY3kuInlgIvmrITkvY3nmoToqbHvvIzkvaDlj6/ku6XlgZrnmoTliIbmnpDljIXmi6zvvJoNCg0KKyDlhajpq5TpoaflrqLlkozmr4/kuIDlgIvpoaflrqLliIbnvqTnmoTvvJoNCiAgICArIOaXj+e+pOWkp+Wwj+iIh+aIkOmVt+i2qOWLog0KICAgICsg5peP576k5bGs5oCn5YiG5p6Q77ya5aaC5bmz5Z2HQ0xW44CB5bmz5Z2H54ef5pS26LKi542744CB5oiQ6ZW3546H44CB5q+b5Yip546HKOmcgOimgeacieaIkOacrOizh+aWmSnnrYnnrYkNCiAgICArIOe1hOmWk+a1gemHj+WSjOW5s+Wdh+a1geWLleapn+eOhw0KDQorIOavj+S4gOWAi+mhp+WuoueahO+8mg0KICAgICsg5L+d55WZ546H44CB6aCQ5pyf6LO86LK36YeR6aGN44CB57WC6Lqr5YO55YC8DQogICAgKyDnm67liY3miYDlnKjnvqTntYTvvIzku6Xlj4rkuIvkuIDmnJ/mnIPovYnliLDlgIvnvqTntYTnmoTmqZ/njocNCiAgICArIOWmguaenOacieihjOmKt+W3peWFt+eahOS9v+eUqOe0gOmMhOeahOipse+8jOaIkeWAkeS5n+WPr+S7peS8sOioiOavj+S4gOaoo+ihjOmKt+W3peWFt+OAgeWwjeavj+S4gOS9jemhp+WuoueahOaIkOWKn+apn+eOhw0KDQrkuIDoiKzogIzoqIDvvIzpgJnkuIDkupvliIbmnpDnmoTntZDmnpzvvIzotrPlpKDorpPmiJHlgJHliLblrprpoaflrqLnmbzlsZXlkozpoaflrqLkv53nlZnnrZbnlaXvvJvoh7PmlrzpoaflrqLlkLjmlLbnrZbnlaXvvIzmiJHlgJHpgJrluLjpgoTpnIDopoHlvp5DUk3mkojlh7rpoaflrqLlgIvkurrlsazmgKfos4fmlpnmiY3og73lgZrliLDjgIIgDQoNCg0KPGJyPjxicj48aHI+PGJyPjxicj48YnI+DQoNCjxzdHlsZT4NCi5jYXB0aW9uIHsNCiAgY29sb3I6ICM3Nzc7DQogIG1hcmdpbi10b3A6IDEwcHg7DQp9DQpwIGNvZGUgew0KICB3aGl0ZS1zcGFjZTogaW5oZXJpdDsNCn0NCnByZSB7DQogIHdvcmQtYnJlYWs6IG5vcm1hbDsNCiAgd29yZC13cmFwOiBub3JtYWw7DQogIGxpbmUtaGVpZ2h0OiAxOw0KfQ0KcHJlIGNvZGUgew0KICB3aGl0ZS1zcGFjZTogaW5oZXJpdDsNCn0NCnAsbGkgew0KICBmb250LWZhbWlseTogIlRyZWJ1Y2hldCBNUyIsICLlvq7ou5/mraPpu5Hpq5QiLCAiTWljcm9zb2Z0IEpoZW5nSGVpIjsNCn0NCg0KLnJ7DQogIGxpbmUtaGVpZ2h0OiAxLjI7DQp9DQoNCnRpdGxlew0KICBjb2xvcjogI2NjMDAwMDsNCiAgZm9udC1mYW1pbHk6ICJUcmVidWNoZXQgTVMiLCAi5b6u6Luf5q2j6buR6auUIiwgIk1pY3Jvc29mdCBKaGVuZ0hlaSI7DQp9DQoNCmJvZHl7DQogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOw0KfQ0KDQpoMSxoMixoMyxoNCxoNXsNCiAgY29sb3I6ICMwMDg4MDA7DQogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOw0KfQ0KDQpoM3sNCiAgY29sb3I6ICMwMDg4MDA7DQogIGJhY2tncm91bmQ6ICNlNmZmZTY7DQogIGxpbmUtaGVpZ2h0OiAyOw0KICBmb250LXdlaWdodDogYm9sZDsNCn0NCg0KaDV7DQogIGNvbG9yOiAjMDA2MDAwOw0KICBiYWNrZ3JvdW5kOiAjZjhmOGY4Ow0KICBsaW5lLWhlaWdodDogMS41Ow0KICBmb250LXdlaWdodDogYm9sZDsNCn0NCg0KZW17DQogIGNvbG9yOiAjMDAwMGMwOw0KICBiYWNrZ3JvdW5kOiAjZjBmMGYwOw0KICB9DQo8L3N0eWxlPg0KDQotLS0NCg0KVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gDQoNClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDdHJsK1NoaWZ0K0VudGVyKi4gDQoNCmBgYHtyfQ0KcGxvdChjYXJzKQ0KYGBgDQoNCkFkZCBhIG5ldyBjaHVuayBieSBjbGlja2luZyB0aGUgKkluc2VydCBDaHVuayogYnV0dG9uIG9uIHRoZSB0b29sYmFyIG9yIGJ5IHByZXNzaW5nICpDdHJsK0FsdCtJKi4NCg0KV2hlbiB5b3Ugc2F2ZSB0aGUgbm90ZWJvb2ssIGFuIEhUTUwgZmlsZSBjb250YWluaW5nIHRoZSBjb2RlIGFuZCBvdXRwdXQgd2lsbCBiZSBzYXZlZCBhbG9uZ3NpZGUgaXQgKGNsaWNrIHRoZSAqUHJldmlldyogYnV0dG9uIG9yIHByZXNzICpDdHJsK1NoaWZ0K0sqIHRvIHByZXZpZXcgdGhlIEhUTUwgZmlsZSkuDQoNClRoZSBwcmV2aWV3IHNob3dzIHlvdSBhIHJlbmRlcmVkIEhUTUwgY29weSBvZiB0aGUgY29udGVudHMgb2YgdGhlIGVkaXRvci4gQ29uc2VxdWVudGx5LCB1bmxpa2UgKktuaXQqLCAqUHJldmlldyogZG9lcyBub3QgcnVuIGFueSBSIGNvZGUgY2h1bmtzLiBJbnN0ZWFkLCB0aGUgb3V0cHV0IG9mIHRoZSBjaHVuayB3aGVuIGl0IHdhcyBsYXN0IHJ1biBpbiB0aGUgZWRpdG9yIGlzIGRpc3BsYXllZC4NCg==