library(ggplot2)
library(RCurl)
library(XML)
library(DT)
library(tidyr)
library(dplyr)
web<- "https://www.bls.gov/opub/ted/2018/long-term-unemployed-account-for-20-3-percent-of-unemployed-in-march-2018-down-from-a-year-earlier.htm"
webcode<- getURL(web)
webhtml<- htmlParse(webcode, asText = T)
tables<- readHTMLTable(webhtml, header = T, colClasses = c("character" , "numeric","numeric","numeric","numeric"))
NAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercion
tables<- tables[[1]]
tables<- tbl_df(tables)
tables[1,2]<-34.1
tables[1,3]<-32.1
tables[1,4]<-15.4
tables[1,5]<-18.5
tables
Sys.setlocale("LC_TIME" , "us")
[1] "English_United States.1252"
tables$Month<- paste("01" , tables$Month , sep = "-")
tables$Month<- as.Date(tables$Month , "%d-%b %Y")
tables<- gather(tables, key = "Types" ,value = "Percentage" , -1)
tables$Types<- as.factor(tables$Types)
tables
mycolors<-brewer.pal(4, "Set3")
p<- ggplot(tables, aes( x= Month , y = Percentage , fill = Types , col = Types))
p+
geom_area(alpha = 0.65)+
theme_classic() +
scale_y_continuous(expand = c(0,0)) +
scale_x_date(expand = c(0,0))+
scale_fill_manual(values = mycolors)+
scale_color_manual(values = mycolors) +
theme(legend.position = "top" ) +
labs(title = "Unemployed persons by duration of unemployment, percent distribution\nJanuary 2008–March 2018" , x = "Years")

NA
LS0tDQp0aXRsZTogImdncGxvdDIg57uD5LmgNy3mipjnur/loIbnp6/lm74iDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoUkN1cmwpDQpsaWJyYXJ5KFhNTCkNCmxpYnJhcnkodGlkeXIpDQpsaWJyYXJ5KGRwbHlyKQ0KDQpgYGANCg0KYGBge3J9DQp3ZWI8LSAiaHR0cHM6Ly93d3cuYmxzLmdvdi9vcHViL3RlZC8yMDE4L2xvbmctdGVybS11bmVtcGxveWVkLWFjY291bnQtZm9yLTIwLTMtcGVyY2VudC1vZi11bmVtcGxveWVkLWluLW1hcmNoLTIwMTgtZG93bi1mcm9tLWEteWVhci1lYXJsaWVyLmh0bSINCndlYmNvZGU8LSBnZXRVUkwod2ViKQ0Kd2ViaHRtbDwtIGh0bWxQYXJzZSh3ZWJjb2RlLCBhc1RleHQgPSBUKQ0KdGFibGVzPC0gcmVhZEhUTUxUYWJsZSh3ZWJodG1sLCBoZWFkZXIgPSBULCBjb2xDbGFzc2VzID0gYygiY2hhcmFjdGVyIiAsICJudW1lcmljIiwibnVtZXJpYyIsIm51bWVyaWMiLCJudW1lcmljIikpDQp0YWJsZXM8LSB0YWJsZXNbWzFdXQ0KdGFibGVzPC0gdGJsX2RmKHRhYmxlcykNCmBgYA0KDQpgYGB7cn0NCnRhYmxlc1sxLDJdPC0zNC4xDQp0YWJsZXNbMSwzXTwtMzIuMQ0KdGFibGVzWzEsNF08LTE1LjQNCnRhYmxlc1sxLDVdPC0xOC41DQp0YWJsZXMNClN5cy5zZXRsb2NhbGUoIkxDX1RJTUUiICwgInVzIikNCnRhYmxlcyRNb250aDwtIHBhc3RlKCIwMSIgLCB0YWJsZXMkTW9udGggLCBzZXAgPSAiLSIpDQp0YWJsZXMkTW9udGg8LSBhcy5EYXRlKHRhYmxlcyRNb250aCAsICIlZC0lYiAlWSIpDQp0YWJsZXM8LSBnYXRoZXIodGFibGVzLCBrZXkgPSAiVHlwZXMiICx2YWx1ZSA9ICJQZXJjZW50YWdlIiAsIC0xKQ0KdGFibGVzJFR5cGVzPC0gYXMuZmFjdG9yKHRhYmxlcyRUeXBlcykNCnRhYmxlcw0KDQoNCg0KYGBgDQoNCg0KYGBge3J9DQpteWNvbG9yczwtYnJld2VyLnBhbCg0LCAiU2V0MyIpDQpwPC0gZ2dwbG90KHRhYmxlcywgYWVzKCB4PSBNb250aCAsIHkgPSBQZXJjZW50YWdlICwgZmlsbCA9IFR5cGVzICwgY29sID0gVHlwZXMpKQ0KcCsNCiAgZ2VvbV9hcmVhKGFscGhhID0gMC42NSkrDQogIHRoZW1lX2NsYXNzaWMoKSArIA0KICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gYygwLDApKSArDQogIHNjYWxlX3hfZGF0ZShleHBhbmQgPSBjKDAsMCkpKw0KICBzY2FsZV9maWxsX21hbnVhbCh2YWx1ZXMgPSBteWNvbG9ycykrDQogICAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcyA9IG15Y29sb3JzKSArIA0KICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAidG9wIiApICsNCiAgbGFicyh0aXRsZSA9ICJVbmVtcGxveWVkIHBlcnNvbnMgYnkgZHVyYXRpb24gb2YgdW5lbXBsb3ltZW50LCBwZXJjZW50IGRpc3RyaWJ1dGlvblxuSmFudWFyeSAyMDA44oCTTWFyY2ggMjAxOCIgLCB4ID0gIlllYXJzIikNCiAgICAgICAgICAgICAgIA0KYGBgDQoNCg==