前言:從交易記錄到顧客價值

善用商業數據分析的工具和技巧,光靠一份最簡單的交易紀錄(只有顧客ID、交易日期和交易金額三個欄位),我們就可以做一系列很深入、很有價值的顧客價值分析和行銷策略規劃,包括:

圖一、顧客價值管理的層次

圖一、顧客價值管理的層次


從這一些分析我們可以看到公司主要的營收和獲利的重要來源,我們也可以看到這一些產生獲利的群組是不是有成長或者衰退的趨勢;據此我們可以設定行銷的重點,決定行銷的策略,和規劃行銷的工具。除了上述的敘述統計、集群分析、和資料視覺化之外,我們還可以利用這些簡單的交易紀錄:


利用這一些預測我們就可以進行全面客製化的:

圖二、顧客價值管理流程

圖二、顧客價值管理流程



Setup
Sys.setlocale("LC_ALL","C")
[1] "C/C/C/C/C/en_US.UTF-8"
packages = c(
  "dplyr","ggplot2","googleVis","devtools","magrittr","caTools","ROCR","caTools")
existing = as.character(installed.packages()[,1])
for(pkg in packages[!(packages %in% existing)]) install.packages(pkg)
if(!is.element("chorddiag", existing))
  devtools::install_github("mattflor/chorddiag")
Library
rm(list=ls(all=T))
options(digits=4, scipen=12)
library(dplyr)
package 'dplyr' was built under R version 3.5.1
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

    filter, lag

The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
library(ggplot2)
library(caTools)
library(ROCR)
Loading required package: gplots

Attaching package: 'gplots'

The following object is masked from 'package:stats':

    lowess
library(googleVis)
Creating a generic function for 'toJSON' from package 'jsonlite' in package 'googleVis'

Welcome to googleVis version 0.6.2

Please read Google's Terms of Use
before you start using the package:
https://developers.google.com/terms/

Note, the plot method of googleVis will by default use
the standard browser to display its output.

See the googleVis package vignettes for more details,
or visit http://github.com/mages/googleVis.

To suppress this message use:
suppressPackageStartupMessages(library(googleVis))
library(chorddiag)


1 1. 資料整理

1.1 交易資料 (X)
X = read.table(
  'purchases.txt', header=FALSE, sep='\t', stringsAsFactors=F)
names(X) = c('cid','amount','date')
X$date = as.Date(X$date)
summary(X)                  # 交易次數 51243 
      cid             amount          date           
 Min.   :    10   Min.   :   5   Min.   :2005-01-02  
 1st Qu.: 57720   1st Qu.:  25   1st Qu.:2009-01-17  
 Median :102440   Median :  30   Median :2011-11-23  
 Mean   :108935   Mean   :  62   Mean   :2011-07-14  
 3rd Qu.:160525   3rd Qu.:  60   3rd Qu.:2013-12-29  
 Max.   :264200   Max.   :4500   Max.   :2015-12-31  
# x: transaction 
par(cex=0.8)
hist(X$date, "years", las=2, freq=T, xlab="", main="No. Transaction by Year")

n_distinct(X$cid)           # 顧客數 18417
[1] 18417
# number of distinct: 多少個顧客
1.2 顧客資料 (A)
A = X %>% 
  mutate(days = as.integer(as.Date("2016-01-01") - date)) %>% 
  group_by(cid) %>% summarise(
    recent = min(days),     # 最近購買距今天數(上一次來購買的最小天數)
    freq = n(),             # 購買次數
    money = mean(amount),   # 平均購買金額(log normal)
    senior = max(days),     # 第一次購買距今天數
    since = min(date)       # 第一次購買日期
  ) %>% data.frame
# A: 顧客資料
# 將「交易筆數」匯集成「顧客」
# mutate: 長出一個新欄位
1.4 顧客資料摘要
summary(A)
      cid             recent          freq           money          senior         since           
 Min.   :    10   Min.   :   1   Min.   : 1.00   Min.   :   5   Min.   :   1   Min.   :2005-01-02  
 1st Qu.: 81990   1st Qu.: 244   1st Qu.: 1.00   1st Qu.:  22   1st Qu.: 988   1st Qu.:2007-10-23  
 Median :136430   Median :1070   Median : 2.00   Median :  30   Median :2087   Median :2010-04-15  
 Mean   :137574   Mean   :1253   Mean   : 2.78   Mean   :  58   Mean   :1984   Mean   :2010-07-26  
 3rd Qu.:195100   3rd Qu.:2130   3rd Qu.: 3.00   3rd Qu.:  50   3rd Qu.:2992   3rd Qu.:2013-04-18  
 Max.   :264200   Max.   :4014   Max.   :45.00   Max.   :4500   Max.   :4016   Max.   :2015-12-31  
1.5 變數的分布狀況
p0 = par(cex=0.8, mfrow=c(2,2), mar=c(3,3,4,2))
hist(A$recent,20,main="recency",ylab="",xlab="")
hist(pmin(A$freq, 10),0:10,main="frequency",ylab="",xlab="")
hist(A$senior,20,main="seniority",ylab="",xlab="")
hist(log(A$money,10),,main="log(money)",ylab="",xlab="")

# pmin: 設定上限值
# 特別需要關心log(money)的值


2. 層級式集群分析

2.1 RFM顧客分群(針對每個顧客)
set.seed(111)
A$grp = kmeans(scale(A[,2:4]),10)$cluster
table(A$grp)  # 族群大小

   1    2    3    4    5    6    7    8    9   10 
1073 2266 1296 2237 3207 1942 1781 2392 2096  127 
# 資料量大,故做k-mean會比較保險
2.2 顧客群組屬性
group_by(A, grp) %>% summarise(
  recent=mean(recent), 
  freq=mean(freq), 
  money=mean(money), 
  size=n() ) %>% 
  mutate( revenue = size*money/1000 )  %>% 
  filter(size > 1) %>% 
  ggplot(aes(x=freq, y=money)) +
  geom_point(aes(size=revenue, col=recent),alpha=0.5) +
  scale_size(range=c(4,30)) +
  scale_color_gradient(low="green",high="red") +
  scale_x_log10() + scale_y_log10(limits=c(30,3000)) + 
  geom_text(aes(label = size ),size=3) +
  theme_bw() + guides(size=F) +
  labs(title="Customer Segements",
       subtitle="(bubble_size:revenue_contribution; text:group_size)",
       color="Recency") +
  xlab("Frequency (log)") + ylab("Average Transaction Amount (log)")

# 泡泡圖:同時顯示4種屬性:x軸、y軸、大小(族群對店家的營收貢獻)、顏色
# 最重要的顧客:127,重點放在保留這一族群的顧客
# 除了visualization之外,泡泡隨時間的動態變化更重要!
# 藉由動態資料的方式(不要把全部的資料做aggration),才能夠找到期中競賽的x、y
### 以10年為例,可以依照不同年份年底做一次統計,這樣泡泡就會動(但可能每一年的分群規則都不一樣)


3. 規則分群

3.1 顧客分群規則
STS = c("N1","N2","R1","R2","S1","S2","S3")
Status = function(rx,fx,mx,sx,K) {factor(
  ifelse(sx < 2*K,
         ifelse(fx*mx > 50, "N2", "N1"),
         ifelse(rx < 2*K,
                ifelse(sx/fx < 0.75*K,"R2","R1"),
                ifelse(rx < 3*K,"S1",
                       ifelse(rx < 4*K,"S2","S3")))), STS)}

圖三、顧客分群規則

3.2 平均購買週期
K = as.integer(sum(A$senior[A$freq>1]) / sum(A$freq[A$freq>1])); K
[1] 521
# 需找「有購買過2次以上的購買顧客」的平均購買週期
# 購買週期 = 521天

回購顧客的平均購買週期 K = 521 days

3.3 滑動資料窗格(每年年底,將資料彙整成資料框)
Y = list()              # 建立一個空的LIST(資料長度、類型不一樣嘢沒關係,可以讓資料變簡潔)
for(y in 2010:2015) {   # 每年年底將顧客資料彙整成一個資料框
  D = as.Date(paste0(c(y, y-1),"-12-31")) # 當期、前期的期末日期 
  Y[[paste0("Y",y)]] = X %>%        # 從交易資料做起
    filter(date <= D[1]) %>%        # 將資料切齊到期末日期
    mutate(days = 1 + as.integer(D[1] - date)) %>%   # 交易距期末天數
    group_by(cid) %>% summarise(    # 依顧客彙總 ...
      recent = min(days),           #   最後一次購買距期末天數   
      freq = n(),                   #   購買次數 (至期末為止)   
      money = mean(amount),         #   平均購買金額 (至期末為止)
      senior = max(days),           #   第一次購買距期末天數
      status = Status(recent,freq,money,senior,K),  # 期末狀態
      since = min(date),                      # 第一次購買日期
      y_freq = sum(date > D[2]),              # 當期購買次數
      y_revenue = sum(amount[date > D[2]])    # 當期購買金額
    ) %>% data.frame }
# 整個y,是一個迴圈變數,將所有dataframe置入
# 競賽:將資料切成前三個月跟後一個月
head(Y$Y2015)
# 每一個顧客,會隨時間而有不同的結果產生(「行銷滑水道」重點:水缸大小、水缸間流動的速度有多大)
3.4 每年年底的累計顧客人數
sapply(Y, nrow)
Y2010 Y2011 Y2012 Y2013 Y2014 Y2015 
10407 11674 13562 15468 16905 18417 
# list 配上 sapply,非常好用
3.5 族群大小變化趨勢
cols = c("gold","orange","blue","green","pink","magenta","darkred")
sapply(Y, function(df) table(df$status)) %>% barplot(col=cols)
legend("topleft",rev(STS),fill=rev(cols))

# 活躍顧客:淺藍色以下(基本上2014達到巔峰,後續便沒有什麼成長了...)
3.6 族群屬性動態分析
CustSegments = do.call(rbind, lapply(Y, function(d) {
  group_by(d, status) %>% summarise(
    average_frequency = mean(freq),
    average_amount = mean(money),
    total_revenue = sum(y_revenue),
    total_no_orders = sum(y_freq),
    average_recency = mean(recent),
    average_seniority = mean(senior),
    group_size = n()
  )})) %>% ungroup %>% 
  mutate(year=rep(2010:2015, each=7)) %>% data.frame
head(CustSegments)
plot( gvisMotionChart(
  CustSegments, "status", "year",
  options=list(width=900, height=600) ) )

圖四、顧客分群規則

3.7 族群屬性動態分析
df = merge(Y$Y2014[,c(1,6)], Y$Y2015[,c(1,6)],
           by="cid", all.x=T)
tx = table(df$status.x, df$status.y) %>% 
  as.data.frame.matrix() %>% as.matrix()
tx    # 流量矩陣(做一個table即可,可看到群間的流動數度)
     N1   N2   R1   R2  S1   S2   S3
N1 1705  381  144   45 831    0    0
N2    0 1131  267  430 263    0    0
R1    0    0 1240   43 819    0    0
R2    0    0  199 1742  75    0    0
S1    0    0  115    3 819 1026    0
S2    0    0   78    1   0  692 1339
S3    0    0   97    0   0    0 3420
tx %>% prop.table(1) %>% round(3)   # 流量矩陣(轉換成 % )
      N1    N2    R1    R2    S1    S2    S3
N1 0.549 0.123 0.046 0.014 0.268 0.000 0.000
N2 0.000 0.541 0.128 0.206 0.126 0.000 0.000
R1 0.000 0.000 0.590 0.020 0.390 0.000 0.000
R2 0.000 0.000 0.099 0.864 0.037 0.000 0.000
S1 0.000 0.000 0.059 0.002 0.417 0.523 0.000
S2 0.000 0.000 0.037 0.000 0.000 0.328 0.635
S3 0.000 0.000 0.028 0.000 0.000 0.000 0.972
3.8 互動式流量分析
chorddiag(tx, groupColors=cols)

# chore diagram(和弦圖、樂譜符號圖,可以變動!!!可以看出流數~)
# 圓周弧度:族群人數
# 中間的小丘:保留在族群內的人
# 中間的弧線:族群間流動的人數
# 


4. 建立模型

在這個案例裡面,我們的資料是收到Y2015年底,所以我們可以假設現在的時間是Y2015年底,我們想要用現有的資料建立模型,來預測每一位顧客:

但是,我們並沒有Y2016的資料,為了要建立模型,我們需要先把時間回推一期,也就是說:

假如Y2016的情況(跟Y2015比)沒有太大的變化的話,接下來我們就可以

4.1 準備資料

我們用Y2014年底的資料做自變數,Y2015年的資料做應變數

CX = left_join(Y$Y2014, Y$Y2015[,c(1,8,9)], by="cid")
# y在2015的資料當中
# left_join: 2個資料框,類似查表的概念,結合兩個資料框(如果欄位表頭不一致,以left為主)
# .x 、 .y: R當中自動加的
    # y_revenue.y: 2015來買多少錢
    # y_freq.y: 2015會不會來買
head(CX)
names(CX)[8:11] = c("freq0","revenue0","Retain", "Revenue")
CX$Retain = CX$Retain > 0
# Retaintion: 保留率
head(CX)
table(CX$Retain) %>% prop.table()  # 平均保留機率 = 22.54%

 FALSE   TRUE 
0.7701 0.2299 
4.2 建立類別模型
mRet = glm(Retain ~ ., CX[,c(2:3,6,8:10)], family=binomial())
summary(mRet)

Call:
glm(formula = Retain ~ ., family = binomial(), data = CX[, c(2:3, 
    6, 8:10)])

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-3.689  -0.473  -0.298  -0.142   3.386  

Coefficients:
             Estimate Std. Error z value        Pr(>|z|)    
(Intercept) -1.074007   0.089431  -12.01         < 2e-16 ***
recent      -0.002067   0.000131  -15.73         < 2e-16 ***
freq         0.095217   0.013882    6.86 0.0000000000069 ***
statusN2     0.669429   0.070234    9.53         < 2e-16 ***
statusR1     0.488321   0.084389    5.79 0.0000000071864 ***
statusR2     1.290002   0.110841   11.64         < 2e-16 ***
statusS1     0.670604   0.146532    4.58 0.0000047279944 ***
statusS2     1.353554   0.208210    6.50 0.0000000000798 ***
statusS3     2.573689   0.275786    9.33         < 2e-16 ***
freq0        0.566557   0.065532    8.65         < 2e-16 ***
revenue0    -0.000132   0.000135   -0.98            0.33    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 18228  on 16904  degrees of freedom
Residual deviance: 11766  on 16894  degrees of freedom
AIC: 11788

Number of Fisher Scoring iterations: 6
4.3 估計類別模型的準確性
pred = predict(mRet,type="response")
table(pred>0.5,CX$Retain) 
       
        FALSE  TRUE
  FALSE 12045  1530
  TRUE    974  2356
# 混淆矩陣 (Confusion Matrix)  
table(pred>0.5,CX$Retain) %>% 
  {sum(diag(.))/sum(.)}            # 正確率(ACC): 85.19% 
[1] 0.8519
colAUC(pred,CX$Retain)             # 辯識率(AUC): 87.92%
                 [,1]
FALSE vs. TRUE 0.8792
prediction(pred, CX$Retain) %>%    # ROC CURVE 
  performance("tpr", "fpr") %>% 
  plot(print.cutoffs.at=seq(0,1,0.1))

4.4 建立數量模型
dx = subset(CX, Revenue > 0)  # subset: 只對有來購買的人做模型(假如有來買的人,會買多少錢?)
mRev = lm(log(Revenue) ~ recent + freq + log(1+money) + senior +
          status + freq0 + log(1+revenue0), dx)  
summary(mRev)                 # 判定係數:R2 = 0.713

Call:
lm(formula = log(Revenue) ~ recent + freq + log(1 + money) + 
    senior + status + freq0 + log(1 + revenue0), data = dx)

Residuals:
   Min     1Q Median     3Q    Max 
-3.245 -0.209 -0.067  0.205  3.435 

Coefficients:
                    Estimate Std. Error t value         Pr(>|t|)    
(Intercept)        0.0587930  0.0458344    1.28           0.1997    
recent             0.0003541  0.0000507    6.98 0.00000000000337 ***
freq               0.0526850  0.0046504   11.33          < 2e-16 ***
log(1 + money)     0.9320818  0.0135203   68.94          < 2e-16 ***
senior            -0.0001369  0.0000182   -7.52 0.00000000000007 ***
statusN2           0.0127716  0.0262656    0.49           0.6268    
statusR1           0.1927532  0.0407579    4.73 0.00000233405019 ***
statusR2           0.0297685  0.0352479    0.84           0.3984    
statusS1           0.0082406  0.0630355    0.13           0.8960    
statusS2          -0.2406398  0.0865731   -2.78           0.0055 ** 
statusS3          -0.3667341  0.1181061   -3.11           0.0019 ** 
freq0              0.0103133  0.0172551    0.60           0.5501    
log(1 + revenue0)  0.0632756  0.0094003    6.73 0.00000000001930 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.463 on 3873 degrees of freedom
Multiple R-squared:  0.713, Adjusted R-squared:  0.712 
F-statistic:  802 on 12 and 3873 DF,  p-value: <2e-16
# 比取了log()的R-square
plot(log(dx$Revenue), predict(mRev), col='pink', cex=0.65)
abline(0,1,col='red') 



5. 估計顧客終生價值

5.1 Y2016的預測值

使用模型對Y2015年底的資料做預測,對資料中的每一位顧客,預測她們在Y2016的保留率和購買金額。

CX = Y$Y2015
names(CX)[8:9] = c("freq0","revenue0")
# 預測Y2016保留率
CX$ProbRetain = predict(mRet,CX,type='response')
# 預測Y2016購買金額
CX$PredRevenue = exp(predict(mRev,CX))
par(mfrow=c(1,2), mar=c(4,3,3,2), cex=0.8)
hist(CX$ProbRetain,main="ProbRetain", ylab="")
hist(log(CX$PredRevenue,10),main="log(PredRevenue)", ylab="")


5.2 估計顧客終生價值(CLV)
顧客\(i\)的終生價值

\[ V_i = \sum_{t=0}^N g \times m_i \frac{r_i^t}{(1+d)^t} = g \times m_i \sum_{t=0}^N (\frac{r_i}{1+d})^t \]

\(m_i\)\(r_i\):顧客\(i\)的預期(每期)營收貢獻、保留機率
\(g\)\(d\):公司的(稅前)營業利潤利率、資金成本
g = 0.5   # (稅前)獲利率
N = 5     # 期數 = 5
d = 0.1   # 利率 = 10%
CX$CLV = g * CX$PredRevenue * rowSums(sapply(
  0:N, function(i) (CX$ProbRetain/(1+d))^i ) )
summary(CX$CLV)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      3      16      24      51      45    5094 
par(mar=c(2,2,3,1), cex=0.8)
hist(log(CX$CLV,10), xlab="", ylab="")

# CLV是用錢算出來的,所以也是錢,需要用log來算
# 取log後所得的值約為30塊/一顧客
5.3 比較各族群的價值
# 各族群的平均營收貢獻、保留機率、終生價值
sapply(CX[,10:12], tapply, CX$status, mean)
   ProbRetain PredRevenue    CLV
N1    0.20269       31.98  20.17
N2    0.44075      131.23 110.89
R1    0.34150       69.85  54.60
R2    0.74925       91.27 136.31
S1    0.05724       56.10  29.66
S2    0.03475       49.48  25.58
S3    0.02326       49.36  25.17
par(mar=c(3,3,4,2), cex=0.8)
boxplot(log(CLV)~status, CX, main="CLV by Groups")

# 新顧客(N1) 跟 沈睡顧客(S1、S2、S3)所帶給這間店的價值其實差不多...


6. 設定行銷策略、規劃行銷工具



7. 選擇行銷對象

給定某一行銷工具的成本和預期效益,選擇可以施行這項工具的對象。

7.1 對R2族群(主力)進行保留

R2族群的預測保留率和購買金額

par(mfrow=c(1,2), mar=c(4,3,3,2), cex=0.8)
hist(CX$ProbRetain[CX$status=="R2"],main="ProbRetain",xlab="")
hist(log(CX$PredRevenue[CX$status=="R2"],10),main="PredRevenue",xlab="")

7.2 估計預期報酬

假設行銷工具的成本和預期效益為

cost = 10        # 成本(假設,藉由過去經驗所得到之假設數值)
effect = 0.75    # 效益:下一期的購買機率(假設)

估計這項行銷工具對每一位R2顧客的預期報酬

Target = subset(CX, status=="R2")
Target$ExpReturn = (effect - Target$ProbRetain) * Target$PredRevenue - cost
summary(Target$ExpReturn)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 -515.8   -15.4   -11.5   -10.3    -8.1   646.9 
# 因為保留機率(ProbRetain)設定為0.75,即表示>0.75的族群不能使用這支程式(會導致預期報償為負值)

這一項工具對R2顧客的預期報酬是負的

7.3 選擇行銷對象

但是,我們還是可以挑出許多預期報酬很大的行銷對象

Target %>% arrange(desc(ExpReturn)) %>% select(cid, ExpReturn) %>% head(15)
sum(Target$ExpReturn > 0)                 # 可實施對象:258(預期報償 > 0)
[1] 258
# 針對性行銷: 將決定下到每個人身上,而不再是以群體為分析對象,可以得到addition revenue

在R2之中,有258人的預期報酬大於零,如果對這258人使用這項工具,我們的期望報酬是:

sum(Target$ExpReturn[Target$ExpReturn > 0])   # 預期報酬:6464
[1] 6464
QUIZ:

我們可以算出對所有的族群實施這項工具的期望報酬 …

Target = CX
Target$ExpReturn = (effect - Target$ProbRetain) * Target$PredRevenue - cost
filter(Target, Target$ExpReturn > 0) %>%
  group_by(status) %>% summarise(
    No.Target = n(),
    AvgROI = mean(ExpReturn),
    TotalROI = sum(ExpReturn) ) %>% data.frame

這個結果是合理的嗎? 你想要怎麼修正這項分析的程序呢?




8. 結論

如果你只有顧客ID、交易日期、交易金額三個欄位的話,你可以做的分析包括:

一般而言,這一些分析的結果,足夠讓我們制定顧客發展和顧客保留策略;至於顧客吸收策略,我們通常還需要從CRM撈出顧客個人屬性資料才能做到。







LS0tCnRpdGxlOiAiQ1ZN77ya6aGn5a6i5YO55YC8566h55CGICIKYXV0aG9yOiAiTTA2NDYxMDAyMSDmpYrlh7HlgKsiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCjxicj4KCiMjIyDliY3oqIDvvJrlvp7kuqTmmJPoqJjpjITliLDpoaflrqLlg7nlgLwKCuWWhOeUqOWVhualreaVuOaTmuWIhuaekOeahOW3peWFt+WSjOaKgOW3p++8jOWFiemdoOS4gOS7veacgOewoeWWrueahOS6pOaYk+e0gOmMhCjlj6rmnInpoaflrqJJROOAgeS6pOaYk+aXpeacn+WSjOS6pOaYk+mHkemhjeS4ieWAi+ashOS9jSnvvIzmiJHlgJHlsLHlj6/ku6XlgZrkuIDns7vliJflvojmt7HlhaXjgIHlvojmnInlg7nlgLznmoTpoaflrqLlg7nlgLzliIbmnpDlkozooYzpirfnrZbnlaXopo/lioPvvIzljIXmi6zvvJoKCisgKirkuqTmmJPoqJjpjITliIbmnpAqKu+8mgogICAgKyDmlZjov7DntbHoqIgKICAgICsg6Lao5Yui44CB5Lqk5Y+J5YiG5p6QCiAgICArIOizh+aWmeimluimuuWMlgoKKyAqKumhp+Wuoue+pOe1hOiIh+aomeexpCoq77yaCiAgICArIOmbhue+pOWIhuaekAogICAgKyDnvqTntYTlsazmgKfliIbmnpAKICAgICsg57WE6ZaT5rWB5YuV5qmf546HCiAgICArIOmhp+WuoijlgIvkurop5rWB5YuV5qmf546HCgoKPGNlbnRlcj4KCiFb5ZyW5LiA44CB6aGn5a6i5YO55YC8566h55CG55qE5bGk5qyhXShmaWcvZmlnMS5wbmcpCgo8L2NlbnRlcj4KCjxicj7lvp7pgJnkuIDkupvliIbmnpDmiJHlgJHlj6/ku6XnnIvliLDlhazlj7jkuLvopoHnmoTnh5/mlLblkoznjbLliKnnmoTph43opoHkvobmupDvvIzmiJHlgJHkuZ/lj6/ku6XnnIvliLDpgJnkuIDkupvnlKLnlJ/njbLliKnnmoTnvqTntYTmmK/kuI3mmK/mnInmiJDplbfmiJbogIXoobDpgIDnmoTotqjli6LvvJvmk5rmraTmiJHlgJHlj6/ku6XoqK3lrprooYzpirfnmoTph43pu57vvIzmsbrlrprooYzpirfnmoTnrZbnlaXvvIzlkozopo/lioPooYzpirfnmoTlt6XlhbfjgILpmaTkuobkuIrov7DnmoTmlZjov7DntbHoqIjjgIHpm4bnvqTliIbmnpDjgIHlkozos4fmlpnoppboprrljJbkuYvlpJbvvIzmiJHlgJHpgoTlj6/ku6XliKnnlKjpgJnkupvnsKHllq7nmoTkuqTmmJPntIDpjITvvJoKCisgKirlu7rnq4vpoJDmuKzmgKfmqKHlnosqKu+8jOmgkOa4rOavj+S4gOS9jemhp+WuoueahO+8mgogICAgKyDkv53nlZnmqZ/njocKICAgICsg6aCQ5pyf54ef5pS2CiAgICArIOe1hOmWk+iuiuaPm+apn+eOhwogICAgKyDkuIvmrKHlj6/og73os7zosrfmmYLplpMKCjxicj7liKnnlKjpgJnkuIDkupvpoJDmuKzmiJHlgJHlsLHlj6/ku6XpgLLooYzlhajpnaLlrqLoo73ljJbnmoTvvJogCgorICoq6aGn5a6i5YO55YC8566h55CGKirvvJoKICAgICsg6aGn5a6i57WC55Sf5YO55YC8CiAgICArIOmhp+WuouWQuOaUtuetlueVpQogICAgKyDpoaflrqLnmbzlsZXnrZbnlaUKICAgICsg6aGn5a6i5L+d55WZ562W55WlCgorICoq6Yed5bCN5oCn6KGM6Yq3KirvvJoKICAgICsg6Kit6KiI6KGM6Yq35pa55qGICiAgICArIOmBuOaTh+ihjOmKt+aWueahiAogICAgKyDpgbjmk4fooYzpirflsI3osaEKCgo8Y2VudGVyPgoKIVvlnJbkuozjgIHpoaflrqLlg7nlgLznrqHnkIbmtYHnqItdKGZpZy9maWcyLnBuZykKCjwvY2VudGVyPgoKCgo8YnI+PGhyPgoKIyMjIyMgU2V0dXAgCmBgYHtyfQpTeXMuc2V0bG9jYWxlKCJMQ19BTEwiLCJDIikKcGFja2FnZXMgPSBjKAogICJkcGx5ciIsImdncGxvdDIiLCJnb29nbGVWaXMiLCJkZXZ0b29scyIsIm1hZ3JpdHRyIiwiY2FUb29scyIsIlJPQ1IiLCJjYVRvb2xzIikKZXhpc3RpbmcgPSBhcy5jaGFyYWN0ZXIoaW5zdGFsbGVkLnBhY2thZ2VzKClbLDFdKQpmb3IocGtnIGluIHBhY2thZ2VzWyEocGFja2FnZXMgJWluJSBleGlzdGluZyldKSBpbnN0YWxsLnBhY2thZ2VzKHBrZykKCmlmKCFpcy5lbGVtZW50KCJjaG9yZGRpYWciLCBleGlzdGluZykpCiAgZGV2dG9vbHM6Omluc3RhbGxfZ2l0aHViKCJtYXR0Zmxvci9jaG9yZGRpYWciKQpgYGAKCiMjIyMjIExpYnJhcnkKYGBge3IgZWNobz1ULCBtZXNzYWdlPUYsIGNhY2hlPUYsIHdhcm5pbmc9Rn0Kcm0obGlzdD1scyhhbGw9VCkpCm9wdGlvbnMoZGlnaXRzPTQsIHNjaXBlbj0xMikKbGlicmFyeShkcGx5cikKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KGNhVG9vbHMpCmxpYnJhcnkoUk9DUikKbGlicmFyeShnb29nbGVWaXMpCmxpYnJhcnkoY2hvcmRkaWFnKQpgYGAKPGJyPjxocj4KCiMjIyAxIDEuIOizh+aWmeaVtOeQhgoKIyMjIyMgMS4xIOS6pOaYk+izh+aWmSAoWCkKYGBge3J9ClggPSByZWFkLnRhYmxlKAogICdwdXJjaGFzZXMudHh0JywgaGVhZGVyPUZBTFNFLCBzZXA9J1x0Jywgc3RyaW5nc0FzRmFjdG9ycz1GKQpuYW1lcyhYKSA9IGMoJ2NpZCcsJ2Ftb3VudCcsJ2RhdGUnKQpYJGRhdGUgPSBhcy5EYXRlKFgkZGF0ZSkKc3VtbWFyeShYKSAgICAgICAgICAgICAgICAgICMg5Lqk5piT5qyh5pW4IDUxMjQzIAojIHg6IHRyYW5zYWN0aW9uIApgYGAKCmBgYHtyIGZpZy5oZWlnaHQ9MywgZmlnLndpZHRoPTcuMn0KcGFyKGNleD0wLjgpCmhpc3QoWCRkYXRlLCAieWVhcnMiLCBsYXM9MiwgZnJlcT1ULCB4bGFiPSIiLCBtYWluPSJOby4gVHJhbnNhY3Rpb24gYnkgWWVhciIpCmBgYAoKCmBgYHtyfQpuX2Rpc3RpbmN0KFgkY2lkKSAgICAgICAgICAgIyDpoaflrqLmlbggMTg0MTcKIyBudW1iZXIgb2YgZGlzdGluY3Q6IOWkmuWwkeWAi+mhp+WuogpgYGAKCiMjIyMjIDEuMiDpoaflrqLos4fmlpkgKEEpCmBgYHtyfQpBID0gWCAlPiUgCiAgbXV0YXRlKGRheXMgPSBhcy5pbnRlZ2VyKGFzLkRhdGUoIjIwMTYtMDEtMDEiKSAtIGRhdGUpKSAlPiUgCiAgZ3JvdXBfYnkoY2lkKSAlPiUgc3VtbWFyaXNlKAogICAgcmVjZW50ID0gbWluKGRheXMpLCAgICAgIyDmnIDov5Hos7zosrfot53ku4rlpKnmlbgo5LiK5LiA5qyh5L6G6LO86LK355qE5pyA5bCP5aSp5pW4KQogICAgZnJlcSA9IG4oKSwgICAgICAgICAgICAgIyDos7zosrfmrKHmlbgKICAgIG1vbmV5ID0gbWVhbihhbW91bnQpLCAgICMg5bmz5Z2H6LO86LK36YeR6aGNKGxvZyBub3JtYWwpCiAgICBzZW5pb3IgPSBtYXgoZGF5cyksICAgICAjIOesrOS4gOasoeizvOiyt+i3neS7iuWkqeaVuAogICAgc2luY2UgPSBtaW4oZGF0ZSkgICAgICAgIyDnrKzkuIDmrKHos7zosrfml6XmnJ8KICApICU+JSBkYXRhLmZyYW1lCiMgQTog6aGn5a6i6LOH5paZCiMg5bCH44CM5Lqk5piT562G5pW444CN5Yyv6ZuG5oiQ44CM6aGn5a6i44CNCiMgbXV0YXRlOiDplbflh7rkuIDlgIvmlrDmrITkvY0KYGBgCgojIyMjIyAxLjQg6aGn5a6i6LOH5paZ5pGY6KaBCmBgYHtyfQpzdW1tYXJ5KEEpCmBgYAoKIyMjIyMgMS41IOiuiuaVuOeahOWIhuW4g+eLgOazgQpgYGB7ciBmaWcuaGVpZ2h0PTQsIGZpZy53aWR0aD04fQpwMCA9IHBhcihjZXg9MC44LCBtZnJvdz1jKDIsMiksIG1hcj1jKDMsMyw0LDIpKQpoaXN0KEEkcmVjZW50LDIwLG1haW49InJlY2VuY3kiLHlsYWI9IiIseGxhYj0iIikKaGlzdChwbWluKEEkZnJlcSwgMTApLDA6MTAsbWFpbj0iZnJlcXVlbmN5Iix5bGFiPSIiLHhsYWI9IiIpCmhpc3QoQSRzZW5pb3IsMjAsbWFpbj0ic2VuaW9yaXR5Iix5bGFiPSIiLHhsYWI9IiIpCmhpc3QobG9nKEEkbW9uZXksMTApLCxtYWluPSJsb2cobW9uZXkpIix5bGFiPSIiLHhsYWI9IiIpCiMgcG1pbjog6Kit5a6a5LiK6ZmQ5YC8CiMg54m55Yil6ZyA6KaB6Zec5b+DbG9nKG1vbmV5KeeahOWAvApgYGAKPGJyPjxocj4KCiMjIyAyLiDlsaTntJrlvI/pm4bnvqTliIbmnpAKCiMjIyMjIDIuMSBSRk3poaflrqLliIbnvqTvvIjph53lsI3mr4/lgIvpoaflrqLvvIkKYGBge3J9CnNldC5zZWVkKDExMSkKQSRncnAgPSBrbWVhbnMoc2NhbGUoQVssMjo0XSksMTApJGNsdXN0ZXIKdGFibGUoQSRncnApICAjIOaXj+e+pOWkp+WwjwojIOizh+aWmemHj+Wkp++8jOaVheWBmmstbWVhbuacg+avlOi8g+S/nemaqgpgYGAKCiMjIyMjIDIuMiDpoaflrqLnvqTntYTlsazmgKcKYGBge3IgZmlnLmhlaWdodD00LjUsIGZpZy53aWR0aD04fQpncm91cF9ieShBLCBncnApICU+JSBzdW1tYXJpc2UoCiAgcmVjZW50PW1lYW4ocmVjZW50KSwgCiAgZnJlcT1tZWFuKGZyZXEpLCAKICBtb25leT1tZWFuKG1vbmV5KSwgCiAgc2l6ZT1uKCkgKSAlPiUgCiAgbXV0YXRlKCByZXZlbnVlID0gc2l6ZSptb25leS8xMDAwICkgICU+JSAKICBmaWx0ZXIoc2l6ZSA+IDEpICU+JSAKICBnZ3Bsb3QoYWVzKHg9ZnJlcSwgeT1tb25leSkpICsKICBnZW9tX3BvaW50KGFlcyhzaXplPXJldmVudWUsIGNvbD1yZWNlbnQpLGFscGhhPTAuNSkgKwogIHNjYWxlX3NpemUocmFuZ2U9Yyg0LDMwKSkgKwogIHNjYWxlX2NvbG9yX2dyYWRpZW50KGxvdz0iZ3JlZW4iLGhpZ2g9InJlZCIpICsKICBzY2FsZV94X2xvZzEwKCkgKyBzY2FsZV95X2xvZzEwKGxpbWl0cz1jKDMwLDMwMDApKSArIAogIGdlb21fdGV4dChhZXMobGFiZWwgPSBzaXplICksc2l6ZT0zKSArCiAgdGhlbWVfYncoKSArIGd1aWRlcyhzaXplPUYpICsKICBsYWJzKHRpdGxlPSJDdXN0b21lciBTZWdlbWVudHMiLAogICAgICAgc3VidGl0bGU9IihidWJibGVfc2l6ZTpyZXZlbnVlX2NvbnRyaWJ1dGlvbjsgdGV4dDpncm91cF9zaXplKSIsCiAgICAgICBjb2xvcj0iUmVjZW5jeSIpICsKICB4bGFiKCJGcmVxdWVuY3kgKGxvZykiKSArIHlsYWIoIkF2ZXJhZ2UgVHJhbnNhY3Rpb24gQW1vdW50IChsb2cpIikKIyDms6Hms6HlnJbvvJrlkIzmmYLpoa/npLo056iu5bGs5oCn77yaeOi7uOOAgXnou7jjgIHlpKflsI/vvIjml4/nvqTlsI3lupflrrbnmoTnh5/mlLbosqLnjbvvvInjgIHpoY/oibIKIyDmnIDph43opoHnmoTpoaflrqLvvJoxMjfvvIzph43pu57mlL7lnKjkv53nlZnpgJnkuIDml4/nvqTnmoTpoaflrqIKIyDpmaTkuoZ2aXN1YWxpemF0aW9u5LmL5aSW77yM5rOh5rOh6Zqo5pmC6ZaT55qE5YuV5oWL6K6K5YyW5pu06YeN6KaB77yBCiMg6JeJ55Sx5YuV5oWL6LOH5paZ55qE5pa55byP77yI5LiN6KaB5oqK5YWo6YOo55qE6LOH5paZ5YGaYWdncmF0aW9u77yJ77yM5omN6IO95aSg5om+5Yiw5pyf5Lit56u26LO955qEeOOAgXkKIyMjIOS7pTEw5bm054K65L6L77yM5Y+v5Lul5L6d54Wn5LiN5ZCM5bm05Lu95bm05bqV5YGa5LiA5qyh57Wx6KiI77yM6YCZ5qij5rOh5rOh5bCx5pyD5YuV77yI5L2G5Y+v6IO95q+P5LiA5bm055qE5YiG576k6KaP5YmH6YO95LiN5LiA5qij77yJCmBgYAo8YnI+PGhyPgoKIyMjIDMuIOimj+WJh+WIhue+pAoKIyMjIyMgMy4xIOmhp+WuouWIhue+pOimj+WJhwpgYGB7cn0KU1RTID0gYygiTjEiLCJOMiIsIlIxIiwiUjIiLCJTMSIsIlMyIiwiUzMiKQpTdGF0dXMgPSBmdW5jdGlvbihyeCxmeCxteCxzeCxLKSB7ZmFjdG9yKAogIGlmZWxzZShzeCA8IDIqSywKICAgICAgICAgaWZlbHNlKGZ4Km14ID4gNTAsICJOMiIsICJOMSIpLAogICAgICAgICBpZmVsc2UocnggPCAyKkssCiAgICAgICAgICAgICAgICBpZmVsc2Uoc3gvZnggPCAwLjc1KkssIlIyIiwiUjEiKSwKICAgICAgICAgICAgICAgIGlmZWxzZShyeCA8IDMqSywiUzEiLAogICAgICAgICAgICAgICAgICAgICAgIGlmZWxzZShyeCA8IDQqSywiUzIiLCJTMyIpKSkpLCBTVFMpfQpgYGAKCjxjZW50ZXI+CgohW+WcluS4ieOAgemhp+WuouWIhue+pOimj+WJh10oZmlnL2ZpZzMuamZpZikKCjwvY2VudGVyPgoKIyMjIyMgMy4yIOW5s+Wdh+izvOiyt+mAseacnwpgYGB7cn0KSyA9IGFzLmludGVnZXIoc3VtKEEkc2VuaW9yW0EkZnJlcT4xXSkgLyBzdW0oQSRmcmVxW0EkZnJlcT4xXSkpOyBLCiMg6ZyA5om+44CM5pyJ6LO86LK36YGOMuasoeS7peS4iueahOizvOiyt+mhp+WuouOAjeeahOW5s+Wdh+izvOiyt+mAseacnwojIOizvOiyt+mAseacnyA9IDUyMeWkqQpgYGAK5Zue6LO86aGn5a6i55qE5bmz5Z2H6LO86LK36YCx5pyfIGBLID0gNTIxIGRheXNgCgojIyMjIyAzLjMg5ruR5YuV6LOH5paZ56qX5qC8KOavj+W5tOW5tOW6le+8jOWwh+izh+aWmeW9meaVtOaIkOizh+aWmeahhikKYGBge3J9ClkgPSBsaXN0KCkgICAgICAgICAgICAgICMg5bu656uL5LiA5YCL56m655qETElTVCjos4fmlpnplbfluqbjgIHpoZ7lnovkuI3kuIDmqKPlmKLmspLpl5zkv4LvvIzlj6/ku6XorpPos4fmlpnorornsKHmvZQpCmZvcih5IGluIDIwMTA6MjAxNSkgeyAgICMg5q+P5bm05bm05bqV5bCH6aGn5a6i6LOH5paZ5b2Z5pW05oiQ5LiA5YCL6LOH5paZ5qGGCiAgRCA9IGFzLkRhdGUocGFzdGUwKGMoeSwgeS0xKSwiLTEyLTMxIikpICMg55W25pyf44CB5YmN5pyf55qE5pyf5pyr5pel5pyfIAogIFlbW3Bhc3RlMCgiWSIseSldXSA9IFggJT4lICAgICAgICAjIOW+nuS6pOaYk+izh+aWmeWBmui1twogICAgZmlsdGVyKGRhdGUgPD0gRFsxXSkgJT4lICAgICAgICAjIOWwh+izh+aWmeWIh+m9iuWIsOacn+acq+aXpeacnwogICAgbXV0YXRlKGRheXMgPSAxICsgYXMuaW50ZWdlcihEWzFdIC0gZGF0ZSkpICU+JSAgICMg5Lqk5piT6Led5pyf5pyr5aSp5pW4CiAgICBncm91cF9ieShjaWQpICU+JSBzdW1tYXJpc2UoICAgICMg5L6d6aGn5a6i5b2Z57i9IC4uLgogICAgICByZWNlbnQgPSBtaW4oZGF5cyksICAgICAgICAgICAjICAg5pyA5b6M5LiA5qyh6LO86LK36Led5pyf5pyr5aSp5pW4ICAgCiAgICAgIGZyZXEgPSBuKCksICAgICAgICAgICAgICAgICAgICMgICDos7zosrfmrKHmlbggKOiHs+acn+acq+eCuuatoikgICAKICAgICAgbW9uZXkgPSBtZWFuKGFtb3VudCksICAgICAgICAgIyAgIOW5s+Wdh+izvOiyt+mHkemhjSAo6Iez5pyf5pyr54K65q2iKQogICAgICBzZW5pb3IgPSBtYXgoZGF5cyksICAgICAgICAgICAjICAg56ys5LiA5qyh6LO86LK36Led5pyf5pyr5aSp5pW4CiAgICAgIHN0YXR1cyA9IFN0YXR1cyhyZWNlbnQsZnJlcSxtb25leSxzZW5pb3IsSyksICAjIOacn+acq+eLgOaFiwogICAgICBzaW5jZSA9IG1pbihkYXRlKSwgICAgICAgICAgICAgICAgICAgICAgIyDnrKzkuIDmrKHos7zosrfml6XmnJ8KICAgICAgeV9mcmVxID0gc3VtKGRhdGUgPiBEWzJdKSwgICAgICAgICAgICAgICMg55W25pyf6LO86LK35qyh5pW4CiAgICAgIHlfcmV2ZW51ZSA9IHN1bShhbW91bnRbZGF0ZSA+IERbMl1dKSAgICAjIOeVtuacn+izvOiyt+mHkemhjQogICAgKSAlPiUgZGF0YS5mcmFtZSB9CiMg5pW05YCLee+8jOaYr+S4gOWAi+i/tOWciOiuiuaVuO+8jOWwh+aJgOaciWRhdGFmcmFtZee9ruWFpQojIOertuizve+8muWwh+izh+aWmeWIh+aIkOWJjeS4ieWAi+aciOi3n+W+jOS4gOWAi+aciApgYGAKCmBgYHtyfQpoZWFkKFkkWTIwMTUpCiMg5q+P5LiA5YCL6aGn5a6i77yM5pyD6Zqo5pmC6ZaT6ICM5pyJ5LiN5ZCM55qE57WQ5p6c55Si55SfKOOAjOihjOmKt+a7keawtOmBk+OAjemHjem7nu+8muawtOe8uOWkp+Wwj+OAgeawtOe8uOmWk+a1geWLleeahOmAn+W6puacieWkmuWkpykKYGBgCgojIyMjIyAzLjQg5q+P5bm05bm05bqV55qE57Sv6KiI6aGn5a6i5Lq65pW4CmBgYHtyfQpzYXBwbHkoWSwgbnJvdykKIyBsaXN0IOmFjeS4iiBzYXBwbHnvvIzpnZ7luLjlpb3nlKgKYGBgCgojIyMjIyAzLjUg5peP576k5aSn5bCP6K6K5YyW6Lao5YuiCmBgYHtyIGZpZy5oZWlnaHQ9NCwgZmlnLndpZHRoPTh9CmNvbHMgPSBjKCJnb2xkIiwib3JhbmdlIiwiYmx1ZSIsImdyZWVuIiwicGluayIsIm1hZ2VudGEiLCJkYXJrcmVkIikKc2FwcGx5KFksIGZ1bmN0aW9uKGRmKSB0YWJsZShkZiRzdGF0dXMpKSAlPiUgYmFycGxvdChjb2w9Y29scykKbGVnZW5kKCJ0b3BsZWZ0IixyZXYoU1RTKSxmaWxsPXJldihjb2xzKSkKIyDmtLvouo3poaflrqLvvJrmt7rol43oibLku6XkuIso5Z+65pys5LiKMjAxNOmBlOWIsOW3lOWzsO+8jOW+jOe6jOS+v+aykuacieS7gOm6vOaIkOmVt+S6hi4uLikKYGBgCgojIyMjIyAzLjYg5peP576k5bGs5oCn5YuV5oWL5YiG5p6QCmBgYHtyfQpDdXN0U2VnbWVudHMgPSBkby5jYWxsKHJiaW5kLCBsYXBwbHkoWSwgZnVuY3Rpb24oZCkgewogIGdyb3VwX2J5KGQsIHN0YXR1cykgJT4lIHN1bW1hcmlzZSgKICAgIGF2ZXJhZ2VfZnJlcXVlbmN5ID0gbWVhbihmcmVxKSwKICAgIGF2ZXJhZ2VfYW1vdW50ID0gbWVhbihtb25leSksCiAgICB0b3RhbF9yZXZlbnVlID0gc3VtKHlfcmV2ZW51ZSksCiAgICB0b3RhbF9ub19vcmRlcnMgPSBzdW0oeV9mcmVxKSwKICAgIGF2ZXJhZ2VfcmVjZW5jeSA9IG1lYW4ocmVjZW50KSwKICAgIGF2ZXJhZ2Vfc2VuaW9yaXR5ID0gbWVhbihzZW5pb3IpLAogICAgZ3JvdXBfc2l6ZSA9IG4oKQogICl9KSkgJT4lIHVuZ3JvdXAgJT4lIAogIG11dGF0ZSh5ZWFyPXJlcCgyMDEwOjIwMTUsIGVhY2g9NykpICU+JSBkYXRhLmZyYW1lCmhlYWQoQ3VzdFNlZ21lbnRzKQpgYGAKCmBgYHtyIGV2YWw9Rn0KcGxvdCggZ3Zpc01vdGlvbkNoYXJ0KAogIEN1c3RTZWdtZW50cywgInN0YXR1cyIsICJ5ZWFyIiwKICBvcHRpb25zPWxpc3Qod2lkdGg9OTAwLCBoZWlnaHQ9NjAwKSApICkKYGBgCgo8Y2VudGVyPgoKIVvlnJblm5vjgIHpoaflrqLliIbnvqTopo/liYddKGZpZy9maWc0LmpmaWYpCgo8L2NlbnRlcj4KCgojIyMjIyAzLjcg5peP576k5bGs5oCn5YuV5oWL5YiG5p6QCmBgYHtyfQpkZiA9IG1lcmdlKFkkWTIwMTRbLGMoMSw2KV0sIFkkWTIwMTVbLGMoMSw2KV0sCiAgICAgICAgICAgYnk9ImNpZCIsIGFsbC54PVQpCnR4ID0gdGFibGUoZGYkc3RhdHVzLngsIGRmJHN0YXR1cy55KSAlPiUgCiAgYXMuZGF0YS5mcmFtZS5tYXRyaXgoKSAlPiUgYXMubWF0cml4KCkKdHggICAgIyDmtYHph4/nn6npmaMo5YGa5LiA5YCLdGFibGXljbPlj6/vvIzlj6/nnIvliLDnvqTplpPnmoTmtYHli5XmlbjluqYpCmBgYAoKYGBge3J9CnR4ICU+JSBwcm9wLnRhYmxlKDEpICU+JSByb3VuZCgzKSAgICMg5rWB6YeP55+p6ZmjKOi9ieaPm+aIkCAlICkKYGBgCgojIyMjIyAzLjgg5LqS5YuV5byP5rWB6YeP5YiG5p6QCmBgYHtyfQpjaG9yZGRpYWcodHgsIGdyb3VwQ29sb3JzPWNvbHMpCiMgY2hvcmUgZGlhZ3Jhbe+8iOWSjOW8puWcluOAgeaoguitnOespuiZn+Wclu+8jOWPr+S7peiuiuWLle+8ge+8ge+8geWPr+S7peeci+WHuua1geaVuO+9nu+8iQojIOWck+WRqOW8p+W6pu+8muaXj+e+pOS6uuaVuAojIOS4remWk+eahOWwj+S4mO+8muS/neeVmeWcqOaXj+e+pOWFp+eahOS6ugojIOS4remWk+eahOW8p+e3mu+8muaXj+e+pOmWk+a1geWLleeahOS6uuaVuAojIApgYGAKCiFbXShmaWcvY2hvcmQuanBnKQoKPGJyPjxocj4KCiMjIyA0LiDlu7rnq4vmqKHlnosKCuWcqOmAmeWAi+ahiOS+i+ijoemdou+8jOaIkeWAkeeahOizh+aWmeaYr+aUtuWIsFkyMDE15bm05bqV77yM5omA5Lul5oiR5YCR5Y+v5Lul5YGH6Kit54++5Zyo55qE5pmC6ZaT5pivWTIwMTXlubTlupXvvIzmiJHlgJHmg7PopoHnlKjnj77mnInnmoTos4fmlpnlu7rnq4vmqKHlnovvvIzkvobpoJDmuKzmr4/kuIDkvY3poaflrqLvvJoKCisg5ZyoWTIwMTblubTmmK/lkKbmnIPkvobos7zosrcgKOS/neeVmeeOh++8mlJldGFpbikKKyDlpbnkvobos7zosrfnmoToqbHvvIzmnIPosrflpJrlsJHpjKIgKOizvOiyt+mHkemhje+8mlJldmVudWUpCgrkvYbmmK/vvIzmiJHlgJHkuKbmspLmnIlZMjAxNueahOizh+aWme+8jOeCuuS6huimgeW7uueri+aooeWei++8jOaIkeWAkemcgOimgeWFiOaKiuaZgumWk+WbnuaOqOS4gOacn++8jOS5n+WwseaYr+iqqu+8mgoKKyDnlKhZMjAxNOW5tOW6leS7peWJjeeahOizh+aWmeaVtOeQhuWHuumgkOa4rOiuiuaVuChYKSDvvIjlm57mjqjkuIDlubTvvIxY77yJCisg55SoWTIwMTXlubTnmoTos4fmlpnmlbTnkIblh7rnm67mqJnorormlbgoWSkgKDIwMTTku6XliY3nmoTos4fmlpnpoJDmuKwyMDE177yMeSkKCuWBh+WmglkyMDE255qE5oOF5rOBKOi3n1kyMDE15q+UKeaykuacieWkquWkp+eahOiuiuWMlueahOipse+8jOaOpeS4i+S+huaIkeWAkeWwseWPr+S7pQoKKyDkvb/nlKjoqbLmqKHlnovvvIzku6VZMjAxNeW5tOW6leeahOizh+aWme+8jOmgkOa4rFkyMDE255qE54uA5rOB77yI5bu65aW95qih5Z6L5LmL5b6M77yM5bCHMjAxNijmnKrkvobmnKrnn6Up6LOH5paZ5YCS6YCy5Y6777yJCgojIyMjIyA0LjEg5rqW5YKZ6LOH5paZCuaIkeWAkeeUqFkyMDE05bm05bqV55qE6LOH5paZ5YGa6Ieq6K6K5pW477yMWTIwMTXlubTnmoTos4fmlpnlgZrmh4norormlbgKCmBgYHtyfQpDWCA9IGxlZnRfam9pbihZJFkyMDE0LCBZJFkyMDE1WyxjKDEsOCw5KV0sIGJ5PSJjaWQiKQojIHnlnKgyMDE155qE6LOH5paZ55W25LitCiMgbGVmdF9qb2luOiAy5YCL6LOH5paZ5qGG77yM6aGe5Ly85p+l6KGo55qE5qaC5b+177yM57WQ5ZCI5YWp5YCL6LOH5paZ5qGGKOWmguaenOashOS9jeihqOmgreS4jeS4gOiHtO+8jOS7pWxlZnTngrrkuLspCiMgLngg44CBIC55OiBS55W25Lit6Ieq5YuV5Yqg55qECiAgICAjIHlfcmV2ZW51ZS55OiAyMDE15L6G6LK35aSa5bCR6YyiCiAgICAjIHlfZnJlcS55OiAyMDE15pyD5LiN5pyD5L6G6LK3CmhlYWQoQ1gpCmBgYAoKYGBge3J9Cm5hbWVzKENYKVs4OjExXSA9IGMoImZyZXEwIiwicmV2ZW51ZTAiLCJSZXRhaW4iLCAiUmV2ZW51ZSIpCkNYJFJldGFpbiA9IENYJFJldGFpbiA+IDAKIyBSZXRhaW50aW9uOiDkv53nlZnnjocKaGVhZChDWCkKYGBgCgpgYGB7cn0KdGFibGUoQ1gkUmV0YWluKSAlPiUgcHJvcC50YWJsZSgpICAjIOW5s+Wdh+S/neeVmeapn+eOhyA9IDIyLjU0JQpgYGAKCiMjIyMjIDQuMiDlu7rnq4vpoZ7liKXmqKHlnosKYGBge3J9Cm1SZXQgPSBnbG0oUmV0YWluIH4gLiwgQ1hbLGMoMjozLDYsODoxMCldLCBmYW1pbHk9Ymlub21pYWwoKSkKc3VtbWFyeShtUmV0KQpgYGAKCiMjIyMjIDQuMyDkvLDoqIjpoZ7liKXmqKHlnovnmoTmupbnorrmgKcKYGBge3J9CnByZWQgPSBwcmVkaWN0KG1SZXQsdHlwZT0icmVzcG9uc2UiKQp0YWJsZShwcmVkPjAuNSxDWCRSZXRhaW4pIAojIOa3t+a3huefqemZoyAoQ29uZnVzaW9uIE1hdHJpeCkgIApgYGAKYGBge3J9CnRhYmxlKHByZWQ+MC41LENYJFJldGFpbikgJT4lIAogIHtzdW0oZGlhZyguKSkvc3VtKC4pfSAgICAgICAgICAgICMg5q2j56K6546HKEFDQyk6IDg1LjE5JSAKYGBgCmBgYHtyfQpjb2xBVUMocHJlZCxDWCRSZXRhaW4pICAgICAgICAgICAgICMg6L6v6K2Y546HKEFVQyk6IDg3LjkyJQpgYGAKYGBge3IgZmlnLmhlaWdodD00LCBmaWcud2lkdGg9NH0KcHJlZGljdGlvbihwcmVkLCBDWCRSZXRhaW4pICU+JSAgICAjIFJPQyBDVVJWRSAKICBwZXJmb3JtYW5jZSgidHByIiwgImZwciIpICU+JSAKICBwbG90KHByaW50LmN1dG9mZnMuYXQ9c2VxKDAsMSwwLjEpKQpgYGAKCiMjIyMjIDQuNCDlu7rnq4vmlbjph4/mqKHlnosKYGBge3J9CmR4ID0gc3Vic2V0KENYLCBSZXZlbnVlID4gMCkgICMgc3Vic2V0OiDlj6rlsI3mnInkvobos7zosrfnmoTkurrlgZrmqKHlnoso5YGH5aaC5pyJ5L6G6LK355qE5Lq677yM5pyD6LK35aSa5bCR6YyiPykKbVJldiA9IGxtKGxvZyhSZXZlbnVlKSB+IHJlY2VudCArIGZyZXEgKyBsb2coMSttb25leSkgKyBzZW5pb3IgKwogICAgICAgICAgc3RhdHVzICsgZnJlcTAgKyBsb2coMStyZXZlbnVlMCksIGR4KSAgCnN1bW1hcnkobVJldikgICAgICAgICAgICAgICAgICMg5Yik5a6a5L+C5pW477yaUjIgPSAwLjcxMwojIOavlOWPluS6hmxvZ++8iO+8ieeahFItc3F1YXJlCmBgYApgYGB7ciBmaWcuaGVpZ2h0PTQuNSwgZmlnLndpZHRoPTQuNX0KcGxvdChsb2coZHgkUmV2ZW51ZSksIHByZWRpY3QobVJldiksIGNvbD0ncGluaycsIGNleD0wLjY1KQphYmxpbmUoMCwxLGNvbD0ncmVkJykgCmBgYAo8YnI+PGhyPgoKIyMjIDUuIOS8sOioiOmhp+Wuoue1gueUn+WDueWAvAoKIyMjIyMgNS4xIFkyMDE255qE6aCQ5ris5YC8CuS9v+eUqOaooeWei+WwjVkyMDE15bm05bqV55qE6LOH5paZ5YGa6aCQ5ris77yM5bCN6LOH5paZ5Lit55qE5q+P5LiA5L2N6aGn5a6i77yM6aCQ5ris5aW55YCR5ZyoWTIwMTbnmoTkv53nlZnnjoflkozos7zosrfph5HpoY3jgIIKYGBge3J9CkNYID0gWSRZMjAxNQpuYW1lcyhDWClbODo5XSA9IGMoImZyZXEwIiwicmV2ZW51ZTAiKQoKIyDpoJDmuKxZMjAxNuS/neeVmeeOhwpDWCRQcm9iUmV0YWluID0gcHJlZGljdChtUmV0LENYLHR5cGU9J3Jlc3BvbnNlJykKCiMg6aCQ5risWTIwMTbos7zosrfph5HpoY0KQ1gkUHJlZFJldmVudWUgPSBleHAocHJlZGljdChtUmV2LENYKSkKYGBgCgpgYGB7ciBmaWcuaGVpZ2h0PTIuNSwgZmlnLndpZHRoPTh9CnBhcihtZnJvdz1jKDEsMiksIG1hcj1jKDQsMywzLDIpLCBjZXg9MC44KQpoaXN0KENYJFByb2JSZXRhaW4sbWFpbj0iUHJvYlJldGFpbiIsIHlsYWI9IiIpCmhpc3QobG9nKENYJFByZWRSZXZlbnVlLDEwKSxtYWluPSJsb2coUHJlZFJldmVudWUpIiwgeWxhYj0iIikKYGBgCjxicj4KCiMjIyMjIDUuMiDkvLDoqIjpoaflrqLntYLnlJ/lg7nlgLwoQ0xWKQoKPGNlbnRlcj7poaflrqIkaSTnmoTntYLnlJ/lg7nlgLw8L2NlbnRlcj4KCiQkIFZfaSA9IFxzdW1fe3Q9MH1eTiBnIFx0aW1lcyBtX2kgXGZyYWN7cl9pXnR9eygxK2QpXnR9ID0gZyBcdGltZXMgbV9pIFxzdW1fe3Q9MH1eTiAoXGZyYWN7cl9pfXsxK2R9KV50ICAkJAoKPGNlbnRlcj4kbV9pJOOAgSRyX2kk77ya6aGn5a6iJGkk55qE6aCQ5pyfKOavj+acnynnh5/mlLbosqLnjbvjgIHkv53nlZnmqZ/njoc8L2NlbnRlcj4KCjxjZW50ZXI+JGck44CBJGQk77ya5YWs5Y+455qEKOeoheWJjSnnh5/mpa3liKnmvaTliKnnjofjgIHos4fph5HmiJDmnKw8L2NlbnRlcj4KCmBgYHtyfQpnID0gMC41ICAgIyAo56iF5YmNKeeNsuWIqeeOhwpOID0gNSAgICAgIyDmnJ/mlbggPSA1CmQgPSAwLjEgICAjIOWIqeeOhyA9IDEwJQpDWCRDTFYgPSBnICogQ1gkUHJlZFJldmVudWUgKiByb3dTdW1zKHNhcHBseSgKICAwOk4sIGZ1bmN0aW9uKGkpIChDWCRQcm9iUmV0YWluLygxK2QpKV5pICkgKQoKc3VtbWFyeShDWCRDTFYpCmBgYAoKYGBge3IgZmlnLmhlaWdodD0yLjUsIGZpZy53aWR0aD03LjJ9CnBhcihtYXI9YygyLDIsMywxKSwgY2V4PTAuOCkKaGlzdChsb2coQ1gkQ0xWLDEwKSwgeGxhYj0iIiwgeWxhYj0iIikKIyBDTFbmmK/nlKjpjKLnrpflh7rkvobnmoTvvIzmiYDku6XkuZ/mmK/pjKLvvIzpnIDopoHnlKhsb2fkvobnrpcKIyDlj5Zsb2flvozmiYDlvpfnmoTlgLzntITngrozMOWhii/kuIDpoaflrqIKYGBgCgojIyMjIyA1LjMg5q+U6LyD5ZCE5peP576k55qE5YO55YC8CgpgYGB7cn0KIyDlkITml4/nvqTnmoTlubPlnYfnh5/mlLbosqLnjbvjgIHkv53nlZnmqZ/njofjgIHntYLnlJ/lg7nlgLwKc2FwcGx5KENYWywxMDoxMl0sIHRhcHBseSwgQ1gkc3RhdHVzLCBtZWFuKQpgYGAKCgpgYGB7cn0KcGFyKG1hcj1jKDMsMyw0LDIpLCBjZXg9MC44KQpib3hwbG90KGxvZyhDTFYpfnN0YXR1cywgQ1gsIG1haW49IkNMViBieSBHcm91cHMiKQojIOaWsOmhp+WuoihOMSkg6LefIOayiOedoemhp+WuoihTMeOAgVMy44CBUzMp5omA5bi257Wm6YCZ6ZaT5bqX55qE5YO55YC85YW25a+m5beu5LiN5aSaLi4uCmBgYAo8YnI+PGhyPgoKIyMjIDYuIOioreWumuihjOmKt+etlueVpeOAgeimj+WKg+ihjOmKt+W3peWFtwoKPGJyPjxocj4KCiMjIyA3LiDpgbjmk4fooYzpirflsI3osaEKCue1puWumuafkOS4gOihjOmKt+W3peWFt+eahOaIkOacrOWSjOmgkOacn+aViOebiu+8jOmBuOaTh+WPr+S7peaWveihjOmAmemgheW3peWFt+eahOWwjeixoeOAgiAKCiMjIyMjIDcuMSDlsI1SMuaXj+e+pCjkuLvlipsp6YCy6KGM5L+d55WZClIy5peP576k55qE6aCQ5ris5L+d55WZ546H5ZKM6LO86LK36YeR6aGNCmBgYHtyIGZpZy5oZWlnaHQ9Mi41LCBmaWcud2lkdGg9OH0KcGFyKG1mcm93PWMoMSwyKSwgbWFyPWMoNCwzLDMsMiksIGNleD0wLjgpCmhpc3QoQ1gkUHJvYlJldGFpbltDWCRzdGF0dXM9PSJSMiJdLG1haW49IlByb2JSZXRhaW4iLHhsYWI9IiIpCmhpc3QobG9nKENYJFByZWRSZXZlbnVlW0NYJHN0YXR1cz09IlIyIl0sMTApLG1haW49IlByZWRSZXZlbnVlIix4bGFiPSIiKQpgYGAKCiMjIyMjIDcuMiDkvLDoqIjpoJDmnJ/loLHphawK5YGH6Kit6KGM6Yq35bel5YW355qE5oiQ5pys5ZKM6aCQ5pyf5pWI55uK54K6CmBgYHtyfQpjb3N0ID0gMTAgICAgICAgICMg5oiQ5pys77yI5YGH6Kit77yM6JeJ55Sx6YGO5Y6757aT6amX5omA5b6X5Yiw5LmL5YGH6Kit5pW45YC877yJCmVmZmVjdCA9IDAuNzUgICAgIyDmlYjnm4rvvJrkuIvkuIDmnJ/nmoTos7zosrfmqZ/njofvvIjlgYfoqK3vvIkKYGBgCgrkvLDoqIjpgJnpoIXooYzpirflt6XlhbflsI3mr4/kuIDkvY1SMumhp+WuoueahOmgkOacn+WgsemFrApgYGB7cn0KVGFyZ2V0ID0gc3Vic2V0KENYLCBzdGF0dXM9PSJSMiIpClRhcmdldCRFeHBSZXR1cm4gPSAoZWZmZWN0IC0gVGFyZ2V0JFByb2JSZXRhaW4pICogVGFyZ2V0JFByZWRSZXZlbnVlIC0gY29zdApzdW1tYXJ5KFRhcmdldCRFeHBSZXR1cm4pCiMg5Zug54K65L+d55WZ5qmf546H77yIUHJvYlJldGFpbu+8ieioreWumueCujAuNzXvvIzljbPooajnpLrvvJ4wLjc155qE5peP576k5LiN6IO95L2/55So6YCZ5pSv56iL5byP77yI5pyD5bCO6Ie06aCQ5pyf5aCx5YSf54K66LKg5YC877yJCmBgYArpgJnkuIDpoIXlt6XlhbflsI1SMumhp+WuoueahOmgkOacn+WgsemFrOaYr+iyoOeahAoKIyMjIyMgNy4zIOmBuOaTh+ihjOmKt+WwjeixoQrkvYbmmK/vvIzmiJHlgJHpgoTmmK/lj6/ku6XmjJHlh7roqLHlpJrpoJDmnJ/loLHphazlvojlpKfnmoTooYzpirflsI3osaEKYGBge3J9ClRhcmdldCAlPiUgYXJyYW5nZShkZXNjKEV4cFJldHVybikpICU+JSBzZWxlY3QoY2lkLCBFeHBSZXR1cm4pICU+JSBoZWFkKDE1KQpgYGAKCmBgYHtyfQpzdW0oVGFyZ2V0JEV4cFJldHVybiA+IDApICAgICAgICAgICAgICAgICAjIOWPr+WvpuaWveWwjeixoe+8mjI1OO+8iOmgkOacn+WgseWEnyA+IDDvvIkKIyDph53lsI3mgKfooYzpirc6IOWwh+axuuWumuS4i+WIsOavj+WAi+S6uui6q+S4iu+8jOiAjOS4jeWGjeaYr+S7pee+pOmrlOeCuuWIhuaekOWwjeixoe+8jOWPr+S7peW+l+WIsGFkZGl0aW9uIHJldmVudWUKYGBgCuWcqFIy5LmL5Lit77yM5pyJMjU45Lq655qE6aCQ5pyf5aCx6YWs5aSn5pa86Zu277yM5aaC5p6c5bCN6YCZMjU45Lq65L2/55So6YCZ6aCF5bel5YW377yM5oiR5YCR55qE5pyf5pyb5aCx6YWs5piv77yaCmBgYHtyfQpzdW0oVGFyZ2V0JEV4cFJldHVybltUYXJnZXQkRXhwUmV0dXJuID4gMF0pICAgIyDpoJDmnJ/loLHphazvvJo2NDY0CmBgYAoKIyMjIyMgUVVJWjoK5oiR5YCR5Y+v5Lul566X5Ye65bCN5omA5pyJ55qE5peP576k5a+m5pa96YCZ6aCF5bel5YW355qE5pyf5pyb5aCx6YWsIC4uLgpgYGB7cn0KVGFyZ2V0ID0gQ1gKVGFyZ2V0JEV4cFJldHVybiA9IChlZmZlY3QgLSBUYXJnZXQkUHJvYlJldGFpbikgKiBUYXJnZXQkUHJlZFJldmVudWUgLSBjb3N0CmZpbHRlcihUYXJnZXQsIFRhcmdldCRFeHBSZXR1cm4gPiAwKSAlPiUKICBncm91cF9ieShzdGF0dXMpICU+JSBzdW1tYXJpc2UoCiAgICBOby5UYXJnZXQgPSBuKCksCiAgICBBdmdST0kgPSBtZWFuKEV4cFJldHVybiksCiAgICBUb3RhbFJPSSA9IHN1bShFeHBSZXR1cm4pICkgJT4lIGRhdGEuZnJhbWUKYGBgCumAmeWAi+e1kOaenOaYr+WQiOeQhueahOWXju+8nyDkvaDmg7PopoHmgI7purzkv67mraPpgJnpoIXliIbmnpDnmoTnqIvluo/lkaLvvJ8KCisKKwoKPGJyPjxicj48aHI+CgojIyMgOC4g57WQ6KuWCgrlpoLmnpzkvaDlj6rmnInpoaflrqJJROOAgeS6pOaYk+aXpeacn+OAgeS6pOaYk+mHkemhjeS4ieWAi+ashOS9jeeahOipse+8jOS9oOWPr+S7peWBmueahOWIhuaekOWMheaLrO+8mgoKKyDlhajpq5TpoaflrqLlkozmr4/kuIDlgIvpoaflrqLliIbnvqTnmoTvvJoKICAgICsg5peP576k5aSn5bCP6IiH5oiQ6ZW36Lao5YuiCiAgICArIOaXj+e+pOWxrOaAp+WIhuaekO+8muWmguW5s+Wdh0NMVuOAgeW5s+Wdh+eHn+aUtuiyoueNu+OAgeaIkOmVt+eOh+OAgeavm+WIqeeOhyjpnIDopoHmnInmiJDmnKzos4fmlpkp562J562JCiAgICArIOe1hOmWk+a1gemHj+WSjOW5s+Wdh+a1geWLleapn+eOhwoKKyDmr4/kuIDlgIvpoaflrqLnmoTvvJoKICAgICsg5L+d55WZ546H44CB6aCQ5pyf6LO86LK36YeR6aGN44CB57WC6Lqr5YO55YC8CiAgICArIOebruWJjeaJgOWcqOe+pOe1hO+8jOS7peWPiuS4i+S4gOacn+acg+i9ieWIsOWAi+e+pOe1hOeahOapn+eOhwogICAgKyDlpoLmnpzmnInooYzpirflt6XlhbfnmoTkvb/nlKjntIDpjITnmoToqbHvvIzmiJHlgJHkuZ/lj6/ku6XkvLDoqIjmr4/kuIDmqKPooYzpirflt6XlhbfjgIHlsI3mr4/kuIDkvY3poaflrqLnmoTmiJDlip/mqZ/njocKCuS4gOiIrOiAjOiogO+8jOmAmeS4gOS6m+WIhuaekOeahOe1kOaenO+8jOi2s+WkoOiuk+aIkeWAkeWItuWumumhp+WuoueZvOWxleWSjOmhp+WuouS/neeVmeetlueVpe+8m+iHs+aWvOmhp+WuouWQuOaUtuetlueVpe+8jOaIkeWAkemAmuW4uOmChOmcgOimgeW+nkNSTeaSiOWHuumhp+WuouWAi+S6uuWxrOaAp+izh+aWmeaJjeiDveWBmuWIsOOAgiAKCgo8YnI+PGJyPjxocj48YnI+PGJyPjxicj4KCjxzdHlsZT4KLmNhcHRpb24gewogIGNvbG9yOiAjNzc3OwogIG1hcmdpbi10b3A6IDEwcHg7Cn0KcCBjb2RlIHsKICB3aGl0ZS1zcGFjZTogaW5oZXJpdDsKfQpwcmUgewogIHdvcmQtYnJlYWs6IG5vcm1hbDsKICB3b3JkLXdyYXA6IG5vcm1hbDsKICBsaW5lLWhlaWdodDogMTsKfQpwcmUgY29kZSB7CiAgd2hpdGUtc3BhY2U6IGluaGVyaXQ7Cn0KcCxsaSB7CiAgZm9udC1mYW1pbHk6ICJUcmVidWNoZXQgTVMiLCAi5b6u6Luf5q2j6buR6auUIiwgIk1pY3Jvc29mdCBKaGVuZ0hlaSI7Cn0KCi5yewogIGxpbmUtaGVpZ2h0OiAxLjI7Cn0KCnRpdGxlewogIGNvbG9yOiAjY2MwMDAwOwogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOwp9Cgpib2R5ewogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOwp9CgpoMSxoMixoMyxoNCxoNXsKICBjb2xvcjogIzAwODgwMDsKICBmb250LWZhbWlseTogIlRyZWJ1Y2hldCBNUyIsICLlvq7ou5/mraPpu5Hpq5QiLCAiTWljcm9zb2Z0IEpoZW5nSGVpIjsKfQoKaDN7CiAgY29sb3I6ICMwMDg4MDA7CiAgYmFja2dyb3VuZDogI2U2ZmZlNjsKICBsaW5lLWhlaWdodDogMjsKICBmb250LXdlaWdodDogYm9sZDsKfQoKaDV7CiAgY29sb3I6ICMwMDYwMDA7CiAgYmFja2dyb3VuZDogI2Y4ZjhmODsKICBsaW5lLWhlaWdodDogMS41OwogIGZvbnQtd2VpZ2h0OiBib2xkOwp9CgplbXsKICBjb2xvcjogIzAwMDBjMDsKICBiYWNrZ3JvdW5kOiAjZjBmMGYwOwogIH0KPC9zdHlsZT4KCg==