This is the final project for Coursera’s MOOC Practical Machine Learning Course frome John Hopkins University.For more information, please visit:
https://www.coursera.org/specialization/jhudatascience/
R Packages using for this project include:
library(caret)
library(randomForest)
library(knitr)
Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement - a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).
The training data for this project are available here: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv
The test data are available here: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv
The data for this project come from this source: http://groupware.les.inf.puc-rio.br/har. If you use the document you create for this class for any purpose please cite them as they have been very generous in allowing their data to be used for this kind of assignment.
The goal of your project is to predict the manner in which they did the exercise. This is the “classe” variable in the training set. You may use any of the other variables to predict with. You should create a report describing how you built your model, how you used cross validation, what you think the expected out of sample error is, and why you made the choices you did. You will also use your prediction model to predict 20 different test cases.
We first load the training and testing data locally.
training = read.csv("pml-training.csv", header = T, na.strings = c("NA","#DIV/0!",""))
testing = read.csv("pml-testing.csv",header = T,na.strings = c("NA","#DIV/0!",""))
Then, we take a look at data dimension as well as variables including in the data.
dim(training)
## [1] 19622 160
dim(testing)
## [1] 20 160
str(training)
## 'data.frame': 19622 obs. of 160 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ user_name : Factor w/ 6 levels "adelmo","carlitos",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ raw_timestamp_part_1 : int 1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 ...
## $ raw_timestamp_part_2 : int 788290 808298 820366 120339 196328 304277 368296 440390 484323 484434 ...
## $ cvtd_timestamp : Factor w/ 20 levels "02/12/2011 13:32",..: 9 9 9 9 9 9 9 9 9 9 ...
## $ new_window : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ num_window : int 11 11 11 12 12 12 12 12 12 12 ...
## $ roll_belt : num 1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
## $ pitch_belt : num 8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
## $ yaw_belt : num -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
## $ total_accel_belt : int 3 3 3 3 3 3 3 3 3 3 ...
## $ kurtosis_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_picth_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_yaw_belt : logi NA NA NA NA NA NA ...
## $ skewness_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_roll_belt.1 : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_yaw_belt : logi NA NA NA NA NA NA ...
## $ max_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_picth_belt : int NA NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_pitch_belt : int NA NA NA NA NA NA NA NA NA NA ...
## $ min_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_pitch_belt : int NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_total_accel_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_pitch_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_pitch_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_pitch_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ gyros_belt_x : num 0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
## $ gyros_belt_y : num 0 0 0 0 0.02 0 0 0 0 0 ...
## $ gyros_belt_z : num -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
## $ accel_belt_x : int -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
## $ accel_belt_y : int 4 4 5 3 2 4 3 4 2 4 ...
## $ accel_belt_z : int 22 22 23 21 24 21 21 21 24 22 ...
## $ magnet_belt_x : int -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
## $ magnet_belt_y : int 599 608 600 604 600 603 599 603 602 609 ...
## $ magnet_belt_z : int -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
## $ roll_arm : num -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
## $ pitch_arm : num 22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
## $ yaw_arm : num -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
## $ total_accel_arm : int 34 34 34 34 34 34 34 34 34 34 ...
## $ var_accel_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ gyros_arm_x : num 0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
## $ gyros_arm_y : num 0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
## $ gyros_arm_z : num -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
## $ accel_arm_x : int -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
## $ accel_arm_y : int 109 110 110 111 111 111 111 111 109 110 ...
## $ accel_arm_z : int -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
## $ magnet_arm_x : int -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
## $ magnet_arm_y : int 337 337 344 344 337 342 336 338 341 334 ...
## $ magnet_arm_z : int 516 513 513 512 506 513 509 510 518 516 ...
## $ kurtosis_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_picth_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_picth_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_arm : int NA NA NA NA NA NA NA NA NA NA ...
## $ min_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_yaw_arm : int NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_yaw_arm : int NA NA NA NA NA NA NA NA NA NA ...
## $ roll_dumbbell : num 13.1 13.1 12.9 13.4 13.4 ...
## $ pitch_dumbbell : num -70.5 -70.6 -70.3 -70.4 -70.4 ...
## $ yaw_dumbbell : num -84.9 -84.7 -85.1 -84.9 -84.9 ...
## $ kurtosis_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_picth_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_yaw_dumbbell : logi NA NA NA NA NA NA ...
## $ skewness_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_pitch_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_yaw_dumbbell : logi NA NA NA NA NA NA ...
## $ max_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_picth_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_pitch_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_yaw_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## [list output truncated]
We will focus on working with the training data and set aside the testing data. Here, the training data has 19622 observations and 160 variables. However, some of the variables content almost only NA values, blank or “#DIV/0!” (which is transfer to “NA” using read.csv). In the next step, these variables will be removed together with the first 7 variables, since these are the participants’ information and timestamps which have little contribution to our model.
Those variables with more than 90% of NA and also the first 7 variables will be removed from the training data.
#select NA variables
NAvar = colSums(is.na(training))>0.9*dim(training)[1]
#remove first 7 and NA variables from the training data
CleanTrain=training[,-c(1:7,which(NAvar==TRUE))]
dim(CleanTrain)
## [1] 19622 53
Now, the cleaned training data is split into subtrain and subtest. We will perform building model to the subtrain with 5 folds cross validation for each methods. Then, apply the final model fits to the subtest and compare the accuracy between methods in order to choose the best model to predict the testing data.
set.seed(3232)
inTrain=createDataPartition(CleanTrain$classe, p=0.7,list = F)
subtrain=CleanTrain[inTrain,]
subtest=CleanTrain[-inTrain,]
dim(subtrain)
## [1] 13737 53
dim(subtest)
## [1] 5885 53
There will be 2 model algorithms using for this projects:
RFmod = train(classe~., data = subtrain,method = "rf", trControl=trainControl(method = "cv",number = 5))
print(RFmod)
## Random Forest
##
## 13737 samples
## 52 predictor
## 5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 10991, 10990, 10989, 10989, 10989
## Resampling results across tuning parameters:
##
## mtry Accuracy Kappa
## 2 0.9906821 0.9882117
## 27 0.9918467 0.9896853
## 52 0.9867508 0.9832378
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 27.
plot(RFmod,main="Accuracy vs number of predictors")
RFpred = predict(RFmod,subtest)
Boostmod = train(classe~., data = subtrain, method = "gbm", trControl=trainControl(method="cv",number = 5),verbose=F)
print(Boostmod)
## Stochastic Gradient Boosting
##
## 13737 samples
## 52 predictor
## 5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 10989, 10989, 10990, 10990, 10990
## Resampling results across tuning parameters:
##
## interaction.depth n.trees Accuracy Kappa
## 1 50 0.7500191 0.6831893
## 1 100 0.8168456 0.7681657
## 1 150 0.8510597 0.8115271
## 2 50 0.8520055 0.8124724
## 2 100 0.9048563 0.8796154
## 2 150 0.9319365 0.9138909
## 3 50 0.8913892 0.8624998
## 3 100 0.9403803 0.9245687
## 3 150 0.9612002 0.9509126
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 150,
## interaction.depth = 3, shrinkage = 0.1 and n.minobsinnode = 10.
Boostpred = predict(Boostmod,subtest)
plot(Boostmod)
confusionMatrix(RFpred,subtest$classe)
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1670 9 0 0 0
## B 3 1127 3 2 1
## C 0 3 1021 5 4
## D 0 0 2 956 6
## E 1 0 0 1 1071
##
## Overall Statistics
##
## Accuracy : 0.9932
## 95% CI : (0.9908, 0.9951)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9914
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.9976 0.9895 0.9951 0.9917 0.9898
## Specificity 0.9979 0.9981 0.9975 0.9984 0.9996
## Pos Pred Value 0.9946 0.9921 0.9884 0.9917 0.9981
## Neg Pred Value 0.9990 0.9975 0.9990 0.9984 0.9977
## Prevalence 0.2845 0.1935 0.1743 0.1638 0.1839
## Detection Rate 0.2838 0.1915 0.1735 0.1624 0.1820
## Detection Prevalence 0.2853 0.1930 0.1755 0.1638 0.1823
## Balanced Accuracy 0.9977 0.9938 0.9963 0.9950 0.9947
confusionMatrix(Boostpred,subtest$classe)
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1651 48 0 0 2
## B 17 1069 25 4 20
## C 5 21 984 26 11
## D 1 1 14 929 12
## E 0 0 3 5 1037
##
## Overall Statistics
##
## Accuracy : 0.9635
## 95% CI : (0.9584, 0.9681)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9538
## Mcnemar's Test P-Value : 2.065e-08
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.9863 0.9385 0.9591 0.9637 0.9584
## Specificity 0.9881 0.9861 0.9870 0.9943 0.9983
## Pos Pred Value 0.9706 0.9419 0.9398 0.9707 0.9923
## Neg Pred Value 0.9945 0.9853 0.9913 0.9929 0.9907
## Prevalence 0.2845 0.1935 0.1743 0.1638 0.1839
## Detection Rate 0.2805 0.1816 0.1672 0.1579 0.1762
## Detection Prevalence 0.2890 0.1929 0.1779 0.1626 0.1776
## Balanced Accuracy 0.9872 0.9623 0.9730 0.9790 0.9784
Since the accuracy of Random Forest (0.9932) is better than the accuracy of Boosting (0.9635), we will use Random Forest algorithm as the method for the Testing data
predict(RFmod,testing)
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E