Part 1

data <- read.csv("Wholesale_customers_data.csv")
str(data)
## 'data.frame':    440 obs. of  8 variables:
##  $ Channel         : int  2 2 2 1 2 2 2 2 1 2 ...
##  $ Region          : int  3 3 3 3 3 3 3 3 3 3 ...
##  $ Fresh           : int  12669 7057 6353 13265 22615 9413 12126 7579 5963 6006 ...
##  $ Milk            : int  9656 9810 8808 1196 5410 8259 3199 4956 3648 11093 ...
##  $ Grocery         : int  7561 9568 7684 4221 7198 5126 6975 9426 6192 18881 ...
##  $ Frozen          : int  214 1762 2405 6404 3915 666 480 1669 425 1159 ...
##  $ Detergents_Paper: int  2674 3293 3516 507 1777 1795 3140 3321 1716 7425 ...
##  $ Delicassen      : int  1338 1776 7844 1788 5185 1451 545 2566 750 2098 ...
summary(data)
##     Channel          Region          Fresh             Milk      
##  Min.   :1.000   Min.   :1.000   Min.   :     3   Min.   :   55  
##  1st Qu.:1.000   1st Qu.:2.000   1st Qu.:  3128   1st Qu.: 1533  
##  Median :1.000   Median :3.000   Median :  8504   Median : 3627  
##  Mean   :1.323   Mean   :2.543   Mean   : 12000   Mean   : 5796  
##  3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.: 16934   3rd Qu.: 7190  
##  Max.   :2.000   Max.   :3.000   Max.   :112151   Max.   :73498  
##     Grocery          Frozen        Detergents_Paper    Delicassen     
##  Min.   :    3   Min.   :   25.0   Min.   :    3.0   Min.   :    3.0  
##  1st Qu.: 2153   1st Qu.:  742.2   1st Qu.:  256.8   1st Qu.:  408.2  
##  Median : 4756   Median : 1526.0   Median :  816.5   Median :  965.5  
##  Mean   : 7951   Mean   : 3071.9   Mean   : 2881.5   Mean   : 1524.9  
##  3rd Qu.:10656   3rd Qu.: 3554.2   3rd Qu.: 3922.0   3rd Qu.: 1820.2  
##  Max.   :92780   Max.   :60869.0   Max.   :40827.0   Max.   :47943.0
top.n.custs <- function (data,cols,n=5) { 
  idx.to.remove <-integer(0) 
  for (c in cols){ 
    col.order <-order(data[,c],decreasing=T) 
    idx <-head(col.order, n) 
    idx.to.remove <-union(idx.to.remove,idx) 
  }
  return(idx.to.remove) 
}
top.custs <-top.n.custs(data,cols=3:8,n=5)
length(top.custs) 
## [1] 19
data[top.custs,]
##     Channel Region  Fresh  Milk Grocery Frozen Detergents_Paper Delicassen
## 182       1      3 112151 29627   18148  16745             4948       8550
## 126       1      3  76237  3473    7102  16538              778        918
## 285       1      3  68951  4411   12609   8692              751       2406
## 40        1      3  56159   555     902  10002              212       2916
## 259       1      1  56083  4563    2124   6422              730       3321
## 87        2      3  22925 73498   32114    987            20070        903
## 48        2      3  44466 54259   55571   7782            24171       6465
## 86        2      3  16117 46197   92780   1026            40827       2944
## 184       1      3  36847 43950   20170  36534              239      47943
## 62        2      3  35942 38369   59598   3254            26701       2017
## 334       2      2   8565  4980   67298    131            38102       1215
## 66        2      3     85 20959   45828     36            24231       1423
## 326       1      2  32717 16784   13626  60869             1272       5609
## 94        1      3  11314  3090    2062  35009               71       2698
## 197       1      1  30624  7209    4897  18711              763       2876
## 104       1      3  56082  3504    8906  18028             1480       2498
## 24        2      3  26373 36423   22019   5154             4337      16523
## 72        1      3  18291  1266   21042   5373             4173      14472
## 88        1      3  43265  5025    8117   6312             1579      14351
data.rm.top<-data[-c(top.custs),] 
set.seed(76964057) 
k <-kmeans(data.rm.top[,-c(1,2)], centers=5) 
k$centers 
##       Fresh      Milk   Grocery   Frozen Detergents_Paper Delicassen
## 1  4189.747  7645.639 11015.277 1335.145        4750.4819  1387.1205
## 2 16470.870  3026.491  4264.741 3217.306         996.5556  1319.7593
## 3 33120.163  4896.977  5579.860 3823.372         945.4651  1620.1860
## 4  5830.214 15295.048 23449.167 1936.452       10361.6429  1912.7381
## 5  5043.434  2329.683  2786.138 2689.814         652.8276   849.8414
rng<-2:20 
tries <-100 
avg.totw.ss <-integer(length(rng)) 
for(v in rng){ 
 v.totw.ss <-integer(tries) 
 for(i in 1:tries){
 k.temp <-kmeans(data.rm.top,centers=v) 
 v.totw.ss[i] <-k.temp$tot.withinss
 }
 avg.totw.ss[v-1] <-mean(v.totw.ss) 
}
plot(rng,avg.totw.ss,type="b", main="Total Within SS by Various K",
 ylab="Average Total Within Sum of Squares",
 xlab="Value of K")

Part 2

In this part, the key is to find the optimal k value for the number of clusters. Elbow graph shows that within group sum of squares started declining more slowly at cluster number 3. The nbCluc graph also shows the majority of indices propose 3 as the best number of clusters. Therefore we use 3 as the number of clusters to train the model, which gives us 96.6% accuracy. Looking at the cluster plot, there are some misclassification. In part 3, we’ll use superfised training to predict the classification k.

wine <- read.csv("wine.csv")
str(wine)
## 'data.frame':    178 obs. of  14 variables:
##  $ Wine                : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Alcohol             : num  14.2 13.2 13.2 14.4 13.2 ...
##  $ Malic.acid          : num  1.71 1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 ...
##  $ Ash                 : num  2.43 2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 ...
##  $ Acl                 : num  15.6 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 ...
##  $ Mg                  : int  127 100 101 113 118 112 96 121 97 98 ...
##  $ Phenols             : num  2.8 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 ...
##  $ Flavanoids          : num  3.06 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 ...
##  $ Nonflavanoid.phenols: num  0.28 0.26 0.3 0.24 0.39 0.34 0.3 0.31 0.29 0.22 ...
##  $ Proanth             : num  2.29 1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 ...
##  $ Color.int           : num  5.64 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 ...
##  $ Hue                 : num  1.04 1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 ...
##  $ OD                  : num  3.92 3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 ...
##  $ Proline             : int  1065 1050 1185 1480 735 1450 1290 1295 1045 1045 ...
wssplot <- function(data, nc=15, seed=1234){
  wss <- (nrow(data)-1)*sum(apply(data,2,var))
  for (i in 2:nc){
    set.seed(seed)
    wss[i] <- sum(kmeans(data, centers=i)$withinss)}
  plot(1:nc, wss, type="b", xlab="Number of Clusters",
       ylab="Within groups sum of squares")}
df <- scale(wine[-1])
wssplot(df)

library(NbClust)
set.seed(1234)
nc <- NbClust(df, min.nc=2, max.nc = 15, method = "kmeans")

## *** : The Hubert index is a graphical method of determining the number of clusters.
##                 In the plot of Hubert index, we seek a significant knee that corresponds to a 
##                 significant increase of the value of the measure i.e the significant peak in Hubert
##                 index second differences plot. 
## 

## *** : The D index is a graphical method of determining the number of clusters. 
##                 In the plot of D index, we seek a significant knee (the significant peak in Dindex
##                 second differences plot) that corresponds to a significant increase of the value of
##                 the measure. 
##  
## ******************************************************************* 
## * Among all indices:                                                
## * 4 proposed 2 as the best number of clusters 
## * 15 proposed 3 as the best number of clusters 
## * 1 proposed 10 as the best number of clusters 
## * 1 proposed 12 as the best number of clusters 
## * 1 proposed 14 as the best number of clusters 
## * 1 proposed 15 as the best number of clusters 
## 
##                    ***** Conclusion *****                            
##  
## * According to the majority rule, the best number of clusters is  3 
##  
##  
## *******************************************************************
barplot(table(nc$Best.n[1,]), xlab = "Number of Clusters", ylab = "Number of Criteria", main = "Number of Clusters Chosen by 26 Criteria")
set.seed(1234)
fit.km <- kmeans(df, 3, nstart=25)
(df_km <- table(wine$Wine, fit.km$cluster))
##    
##      1  2  3
##   1 59  0  0
##   2  3 65  3
##   3  0  0 48
(Accuracy <- (sum(diag(df_km))/sum(df_km)*100))
## [1] 96.62921
library(cluster)
clusplot(df, fit.km$cluster, main='2D representation of the Cluster solution',
         color=TRUE, shade=TRUE,
         labels=2, lines=0)

Part 3

In part three, we try to train the model and predict the cluster classification we generated in Part 2. We use rpart to train the model, and it gave us 91.9% accuracy. Therefore, it seems that the accuracy is impacted by the misclassification. The accuracy in part 3 (91.9%) is lower than in part 2 (96%), meaning that if there’s misclassification in the cluster analysis, there would be even less accuracy in the follow up analysis (part 3).

df_rpart <- data.frame(k=fit.km$cluster, df)
rdf <- df_rpart[sample(1:nrow(df_rpart)), ]
train <- rdf[1:(as.integer(.8*nrow(rdf))-1), ]
test <- rdf[(as.integer(.8*nrow(rdf))):nrow(rdf), ]
library(rpart)
fit <- rpart(k ~ ., data=train, method="class")
pred <- predict(fit, test, type="class")
(news_tbl <- table(pred, test$k))
##     
## pred  1  2  3
##    1 11  1  0
##    2  0 12  1
##    3  0  1 11
(Accuracy <- (sum(diag(news_tbl))/sum(news_tbl)*100))
## [1] 91.89189

Part 4

In this part we use the knn method to train a model on breast cancer dataset and one on news popularity. We had to normalize the data because variables are on different scales. For the breast cancer dataset, we used 21 as k value (a standard which is square root of the number of data points in the training dataset) and achieved 98% accuracy. However, in the news popularity data set, I tested a number of k values from 5 to 100 which is roughly the squareroot of the size of the training dataset, and was not able to reach a high accuracy. k=20 gave me the highest accuracy at 52.2%.

wbcd <- read.csv("wisc_bc_data.csv", stringsAsFactors = FALSE)
str(wbcd)
## 'data.frame':    569 obs. of  32 variables:
##  $ id               : int  87139402 8910251 905520 868871 9012568 906539 925291 87880 862989 89827 ...
##  $ diagnosis        : chr  "B" "B" "B" "B" ...
##  $ radius_mean      : num  12.3 10.6 11 11.3 15.2 ...
##  $ texture_mean     : num  12.4 18.9 16.8 13.4 13.2 ...
##  $ perimeter_mean   : num  78.8 69.3 70.9 73 97.7 ...
##  $ area_mean        : num  464 346 373 385 712 ...
##  $ smoothness_mean  : num  0.1028 0.0969 0.1077 0.1164 0.0796 ...
##  $ compactness_mean : num  0.0698 0.1147 0.078 0.1136 0.0693 ...
##  $ concavity_mean   : num  0.0399 0.0639 0.0305 0.0464 0.0339 ...
##  $ points_mean      : num  0.037 0.0264 0.0248 0.048 0.0266 ...
##  $ symmetry_mean    : num  0.196 0.192 0.171 0.177 0.172 ...
##  $ dimension_mean   : num  0.0595 0.0649 0.0634 0.0607 0.0554 ...
##  $ radius_se        : num  0.236 0.451 0.197 0.338 0.178 ...
##  $ texture_se       : num  0.666 1.197 1.387 1.343 0.412 ...
##  $ perimeter_se     : num  1.67 3.43 1.34 1.85 1.34 ...
##  $ area_se          : num  17.4 27.1 13.5 26.3 17.7 ...
##  $ smoothness_se    : num  0.00805 0.00747 0.00516 0.01127 0.00501 ...
##  $ compactness_se   : num  0.0118 0.03581 0.00936 0.03498 0.01485 ...
##  $ concavity_se     : num  0.0168 0.0335 0.0106 0.0219 0.0155 ...
##  $ points_se        : num  0.01241 0.01365 0.00748 0.01965 0.00915 ...
##  $ symmetry_se      : num  0.0192 0.035 0.0172 0.0158 0.0165 ...
##  $ dimension_se     : num  0.00225 0.00332 0.0022 0.00344 0.00177 ...
##  $ radius_worst     : num  13.5 11.9 12.4 11.9 16.2 ...
##  $ texture_worst    : num  15.6 22.9 26.4 15.8 15.7 ...
##  $ perimeter_worst  : num  87 78.3 79.9 76.5 104.5 ...
##  $ area_worst       : num  549 425 471 434 819 ...
##  $ smoothness_worst : num  0.139 0.121 0.137 0.137 0.113 ...
##  $ compactness_worst: num  0.127 0.252 0.148 0.182 0.174 ...
##  $ concavity_worst  : num  0.1242 0.1916 0.1067 0.0867 0.1362 ...
##  $ points_worst     : num  0.0939 0.0793 0.0743 0.0861 0.0818 ...
##  $ symmetry_worst   : num  0.283 0.294 0.3 0.21 0.249 ...
##  $ dimension_worst  : num  0.0677 0.0759 0.0788 0.0678 0.0677 ...
wbcd <- wbcd[-1]
table(wbcd$diagnosis)
## 
##   B   M 
## 357 212
wbcd$diagnosis <- factor(wbcd$diagnosis, levels = c("B", "M"), labels = c("Benign", "Malignant"))
round(prop.table(table(wbcd$diagnosis)) * 100, digits = 1)
## 
##    Benign Malignant 
##      62.7      37.3
normalize <- function(x) {
    return ((x - min(x)) / (max(x) - min(x)))
}
wbcd_n <- as.data.frame(lapply(wbcd[2:31], normalize))
summary(wbcd_n)
##   radius_mean      texture_mean    perimeter_mean     area_mean     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.2233   1st Qu.:0.2185   1st Qu.:0.2168   1st Qu.:0.1174  
##  Median :0.3024   Median :0.3088   Median :0.2933   Median :0.1729  
##  Mean   :0.3382   Mean   :0.3240   Mean   :0.3329   Mean   :0.2169  
##  3rd Qu.:0.4164   3rd Qu.:0.4089   3rd Qu.:0.4168   3rd Qu.:0.2711  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  smoothness_mean  compactness_mean concavity_mean     points_mean    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.3046   1st Qu.:0.1397   1st Qu.:0.06926   1st Qu.:0.1009  
##  Median :0.3904   Median :0.2247   Median :0.14419   Median :0.1665  
##  Mean   :0.3948   Mean   :0.2606   Mean   :0.20806   Mean   :0.2431  
##  3rd Qu.:0.4755   3rd Qu.:0.3405   3rd Qu.:0.30623   3rd Qu.:0.3678  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##  symmetry_mean    dimension_mean     radius_se         texture_se    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.2823   1st Qu.:0.1630   1st Qu.:0.04378   1st Qu.:0.1047  
##  Median :0.3697   Median :0.2439   Median :0.07702   Median :0.1653  
##  Mean   :0.3796   Mean   :0.2704   Mean   :0.10635   Mean   :0.1893  
##  3rd Qu.:0.4530   3rd Qu.:0.3404   3rd Qu.:0.13304   3rd Qu.:0.2462  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##   perimeter_se        area_se        smoothness_se    compactness_se   
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.04000   1st Qu.:0.02064   1st Qu.:0.1175   1st Qu.:0.08132  
##  Median :0.07209   Median :0.03311   Median :0.1586   Median :0.13667  
##  Mean   :0.09938   Mean   :0.06264   Mean   :0.1811   Mean   :0.17444  
##  3rd Qu.:0.12251   3rd Qu.:0.07170   3rd Qu.:0.2187   3rd Qu.:0.22680  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000  
##   concavity_se       points_se       symmetry_se      dimension_se    
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.03811   1st Qu.:0.1447   1st Qu.:0.1024   1st Qu.:0.04675  
##  Median :0.06538   Median :0.2070   Median :0.1526   Median :0.07919  
##  Mean   :0.08054   Mean   :0.2235   Mean   :0.1781   Mean   :0.10019  
##  3rd Qu.:0.10619   3rd Qu.:0.2787   3rd Qu.:0.2195   3rd Qu.:0.12656  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##   radius_worst    texture_worst    perimeter_worst    area_worst     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.1807   1st Qu.:0.2415   1st Qu.:0.1678   1st Qu.:0.08113  
##  Median :0.2504   Median :0.3569   Median :0.2353   Median :0.12321  
##  Mean   :0.2967   Mean   :0.3640   Mean   :0.2831   Mean   :0.17091  
##  3rd Qu.:0.3863   3rd Qu.:0.4717   3rd Qu.:0.3735   3rd Qu.:0.22090  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##  smoothness_worst compactness_worst concavity_worst    points_worst   
##  Min.   :0.0000   Min.   :0.0000    Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.3000   1st Qu.:0.1163    1st Qu.:0.09145   1st Qu.:0.2231  
##  Median :0.3971   Median :0.1791    Median :0.18107   Median :0.3434  
##  Mean   :0.4041   Mean   :0.2202    Mean   :0.21740   Mean   :0.3938  
##  3rd Qu.:0.4942   3rd Qu.:0.3025    3rd Qu.:0.30583   3rd Qu.:0.5546  
##  Max.   :1.0000   Max.   :1.0000    Max.   :1.00000   Max.   :1.0000  
##  symmetry_worst   dimension_worst 
##  Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.1851   1st Qu.:0.1077  
##  Median :0.2478   Median :0.1640  
##  Mean   :0.2633   Mean   :0.1896  
##  3rd Qu.:0.3182   3rd Qu.:0.2429  
##  Max.   :1.0000   Max.   :1.0000
wbcd_train <- wbcd_n[1:469, ]
wbcd_test <- wbcd_n[470:569, ]
wbcd_train_labels <- wbcd[1:469, 1]
wbcd_test_labels <- wbcd[470:569, 1]
library(class)
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl=wbcd_train_labels, k = 21)
(wbcd_tbl <- table(wbcd_test_pred, wbcd_test_labels))
##               wbcd_test_labels
## wbcd_test_pred Benign Malignant
##      Benign        61         2
##      Malignant      0        37
(Accuracy <- (wbcd_tbl[1]+wbcd_tbl[4])/sum(wbcd_tbl)*100)
## [1] 98
news <- read.csv("OnlineNewsPopularity.csv")
newsShort <- data.frame(news$n_tokens_title, news$n_tokens_content, news$n_unique_tokens, news$n_non_stop_words, news$num_hrefs, news$num_imgs, news$num_videos, news$average_token_length, news$num_keywords, news$kw_max_max, news$global_sentiment_polarity, news$avg_positive_polarity, news$title_subjectivity, news$title_sentiment_polarity, news$abs_title_subjectivity, news$abs_title_sentiment_polarity, news$shares)

colnames(newsShort) <- c("n_tokens_title", "n_tokens_content", "n_unique_tokens", "n_non_stop_words", "num_hrefs", "num_imgs", "num_videos", "average_token_length", "num_keywords", "kw_max_max", "global_sentiment_polarity", "avg_positive_polarity", "title_subjectivity", "title_sentiment_polarity", "abs_title_subjectivity", "abs_title_sentiment_polarity", "shares")

newsShort$popular = rep('na', nrow(newsShort))
for(i in 1:39644) {
     if(newsShort$shares[i] >= 1400) {
         newsShort$popular[i] = "yes"} 
     else {newsShort$popular[i] = "no"}
}
newsShort$shares = newsShort$popular
newsShort$shares <- as.factor(newsShort$shares)
newsShort <- newsShort[-18]
news_n <- as.data.frame(lapply(newsShort[1:16], normalize))
news_train <- news_n[1:9000, ]
news_test <- news_n[9001:10000, ]
news_train_labels <- newsShort[1:9000, 17]
news_test_labels <- newsShort[9001:10000, 17]
news_test_pred <- knn(train = news_train, test = news_test, cl=news_train_labels, k = 20)
(news_tbl <- table(news_test_pred, news_test_labels))
##               news_test_labels
## news_test_pred  no yes
##            no  212 143
##            yes 335 310
(Accuracy <- (news_tbl[1]+news_tbl[4])/sum(news_tbl)*100)
## [1] 52.2