Nepal
I found R visualization package Highcharter which looks great. So, I wanted to use the package and I chose to plot Nepal’s cities population on Nepal map. Nepal is a mountainous landlocked country in South Asia. It is Surrounded by India from three sides (south, east, west) and China from the north. It has an area of 147.181 km2. The capital of Nepal is Kathmandu which is also the largest city of Nepal. Its total population is 29,660,033 according to the worldpopulationreview.
Loading Data
I am using the data for the cities of Nepal from worldpopulationreview and coordinates is from wikipedia.
library(highcharter)
cities <- data.frame(
name = c("Kathmandu", "Pokhara", "Patan", "Biratnagar","Birganj","Dharan","Bharatpur","Janakpur","Dhangarhi","Butwal","Mahendranagar","Hetauda","Madhyapur Thimi","Triyuga","Inaruwa","Nepalgunj","Siddharthanagar","Gulariya","itahari","Panauti"),
lat = c(27.70169,28.238,27.6644,26.4525,27.0449,26.7944,27.6487,26.7271,28.6852,27.6874,28.9873,27.4368,27.6782,26.7807,26.6094,28.0548,27.5065,28.2228,26.6646,27.5829),
lon = c(85.3206,83.9956,85.3188,87.2718,84.8672,87.2817,84.4173,85.9407,80.6216,83.4323,80.1652,85.0026,85.3808,86.641,87.1572,81.6145,83.4377,81.3289,87.2718,85.5097),
z = c(1442271,200000,183310,182324,133238,108600,107157,93767,92294,91733,88381,84775,83036,71405,70093,64400,63367,53107,47984,46595)
)
Lets see how the dataframe looks like.
cities
The Nepcities dataframe has 4 columns and 20 rows.The description of columns:
- name: name of the city
- lat: latitude of the city
- lon: longitude of the city
- z: Population of the city I will plot top 20 cities of Nepal on basis of the Population.
Making Map
I will use hcmap function of highcharter to create map of Nepal.
hcmap("countries/np/np-all", showInLegend = FALSE) %>%
hc_add_series(data = cities, type = "mapbubble", name = "NepCities", maxSize = '10%') %>%
hc_mapNavigation(enabled = FALSE)
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 23995 100 23995 0 0 58811 0 --:--:-- --:--:-- --:--:-- 58811
This is the bubble plot of Nepals 20 cities on the basis of the Population. It is a hoverable map which shows the population in its tooltips. This plot shows that there are lots of cities in the southern region of Country.I found highcharter very good visualization package with lots of customization features. I will further use this tool to show the interactive visualizations.
LS0tCnRpdGxlOiAiUG9wdWxhdGlvbiBvZiBOZXBhbGVzZSBjaXRpZXMiCm91dHB1dDogCiAgaHRtbF9ub3RlYm9vazoKICAgIHRoZW1lOiB5ZXRpCi0tLQojIyBOZXBhbAohW05lcGFsXSgvaG9tZS9kaXdhc2hyZXN0aGEvRGVza3RvcC9uZXBhbDIuanBnKQohW21hcCBvZiBOZXBhbF0oL2hvbWUvZGl3YXNocmVzdGhhL0Rlc2t0b3AvbWFwLW5lcGFsLmpwZykKSSBmb3VuZCAgUiB2aXN1YWxpemF0aW9uIHBhY2thZ2UgW0hpZ2hjaGFydGVyXShodHRwOi8vamt1bnN0LmNvbS9oaWdoY2hhcnRlci8pIHdoaWNoIGxvb2tzIGdyZWF0LiBTbywgSSB3YW50ZWQgdG8gdXNlIHRoZSBwYWNrYWdlIGFuZCBJIGNob3NlIHRvIHBsb3QgTmVwYWzigJlzIGNpdGllcyBwb3B1bGF0aW9uIG9uIE5lcGFsIG1hcC4gTmVwYWwgaXMgYSBtb3VudGFpbm91cyBsYW5kbG9ja2VkIGNvdW50cnkgaW4gU291dGggQXNpYS4gSXQgaXMgU3Vycm91bmRlZCBieSBJbmRpYSBmcm9tIHRocmVlIHNpZGVzIChzb3V0aCwgZWFzdCwgd2VzdCkgYW5kIENoaW5hIGZyb20gdGhlIG5vcnRoLiBJdCBoYXMgYW4gYXJlYSBvZiAxNDcuMTgxIGttMi4gVGhlIGNhcGl0YWwgb2YgTmVwYWwgaXMgS2F0aG1hbmR1IHdoaWNoIGlzIGFsc28gdGhlIGxhcmdlc3QgY2l0eSBvZiBOZXBhbC4gSXRzIHRvdGFsIHBvcHVsYXRpb24gaXMgMjksNjYwLDAzMyBhY2NvcmRpbmcgdG8gdGhlICBbd29ybGRwb3B1bGF0aW9ucmV2aWV3XShodHRwOi8vd29ybGRwb3B1bGF0aW9ucmV2aWV3LmNvbS9jb3VudHJpZXMvbmVwYWwtcG9wdWxhdGlvbi8pLgoKIyMgTG9hZGluZyBEYXRhCkkgYW0gdXNpbmcgdGhlIGRhdGEgZm9yIHRoZSBjaXRpZXMgb2YgTmVwYWwgZnJvbSBbd29ybGRwb3B1bGF0aW9ucmV2aWV3XShodHRwOi8vd29ybGRwb3B1bGF0aW9ucmV2aWV3LmNvbS9jb3VudHJpZXMvbmVwYWwtcG9wdWxhdGlvbi8pIGFuZCBjb29yZGluYXRlcyBpcyBmcm9tIFt3aWtpcGVkaWFdKGh0dHBzOi8vd3d3Lndpa2lwZWRpYS5vcmcvKS4KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbGlicmFyeShoaWdoY2hhcnRlcikKTmVwY2l0aWVzIDwtIGRhdGEuZnJhbWUoCiAgbmFtZSA9IGMoIkthdGhtYW5kdSIsICJQb2toYXJhIiwgIlBhdGFuIiwgIkJpcmF0bmFnYXIiLCJCaXJnYW5qIiwiRGhhcmFuIiwiQmhhcmF0cHVyIiwiSmFuYWtwdXIiLCJEaGFuZ2FyaGkiLCJCdXR3YWwiLCJNYWhlbmRyYW5hZ2FyIiwiSGV0YXVkYSIsIk1hZGh5YXB1ciBUaGltaSIsIlRyaXl1Z2EiLCJJbmFydXdhIiwiTmVwYWxndW5qIiwiU2lkZGhhcnRoYW5hZ2FyIiwiR3VsYXJpeWEiLCJpdGFoYXJpIiwiUGFuYXV0aSIpLAogIGxhdCA9IGMoMjcuNzAxNjksMjguMjM4LDI3LjY2NDQsMjYuNDUyNSwyNy4wNDQ5LDI2Ljc5NDQsMjcuNjQ4NywyNi43MjcxLDI4LjY4NTIsMjcuNjg3NCwyOC45ODczLDI3LjQzNjgsMjcuNjc4MiwyNi43ODA3LDI2LjYwOTQsMjguMDU0OCwyNy41MDY1LDI4LjIyMjgsMjYuNjY0NiwyNy41ODI5KSwKICBsb24gPSBjKDg1LjMyMDYsODMuOTk1Niw4NS4zMTg4LDg3LjI3MTgsODQuODY3Miw4Ny4yODE3LDg0LjQxNzMsODUuOTQwNyw4MC42MjE2LDgzLjQzMjMsODAuMTY1Miw4NS4wMDI2LDg1LjM4MDgsODYuNjQxLDg3LjE1NzIsODEuNjE0NSw4My40Mzc3LDgxLjMyODksODcuMjcxOCw4NS41MDk3KSwKICB6ICAgPSBjKDE0NDIyNzEsMjAwMDAwLDE4MzMxMCwxODIzMjQsMTMzMjM4LDEwODYwMCwxMDcxNTcsOTM3NjcsOTIyOTQsOTE3MzMsODgzODEsODQ3NzUsODMwMzYsNzE0MDUsNzAwOTMsNjQ0MDAsNjMzNjcsNTMxMDcsNDc5ODQsNDY1OTUpCiAgKQpgYGAKTGV0cyBzZWUgaG93IHRoZSBkYXRhZnJhbWUgbG9va3MgbGlrZS4KYGBge3J9Ck5lcGNpdGllcwpgYGAKVGhlIE5lcGNpdGllcyBkYXRhZnJhbWUgaGFzIDQgY29sdW1ucyBhbmQgMjAgcm93cy5UaGUgZGVzY3JpcHRpb24gb2YgY29sdW1uczoKCiogbmFtZTogbmFtZSBvZiB0aGUgY2l0eQoqIGxhdDogbGF0aXR1ZGUgb2YgdGhlIGNpdHkKKiBsb246IGxvbmdpdHVkZSBvZiB0aGUgY2l0eQoqIHo6IFBvcHVsYXRpb24gb2YgdGhlIGNpdHkKSSB3aWxsIHBsb3QgdG9wIDIwIGNpdGllcyBvZiBOZXBhbCBvbiBiYXNpcyBvZiB0aGUgUG9wdWxhdGlvbi4KCiMjIE1ha2luZyBNYXAKSSB3aWxsIHVzZSBoY21hcCBmdW5jdGlvbiBvZiBoaWdoY2hhcnRlciB0byBjcmVhdGUgbWFwIG9mIE5lcGFsLgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBwYWdlZC5wcmludD1GQUxTRX0KaGNtYXAoImNvdW50cmllcy9ucC9ucC1hbGwiLCBzaG93SW5MZWdlbmQgPSBGQUxTRSkgJT4lIAogIGhjX2FkZF9zZXJpZXMoZGF0YSA9IGNpdGllcywgdHlwZSA9ICJtYXBidWJibGUiLCBuYW1lID0gIk5lcENpdGllcyIsIG1heFNpemUgPSAnMTAlJykgJT4lIAogIGhjX21hcE5hdmlnYXRpb24oZW5hYmxlZCA9IEZBTFNFKSAKCmBgYApUaGlzIGlzIHRoZSBidWJibGUgcGxvdCBvZiBOZXBhbHMgMjAgY2l0aWVzIG9uIHRoZSBiYXNpcyBvZiB0aGUgUG9wdWxhdGlvbi4gSXQgaXMgYSBob3ZlcmFibGUgbWFwIHdoaWNoIHNob3dzIHRoZSBwb3B1bGF0aW9uIGluIGl0cyB0b29sdGlwcy4gVGhpcyBwbG90IHNob3dzIHRoYXQgdGhlcmUgYXJlIGxvdHMgb2YgY2l0aWVzIGluIHRoZSBzb3V0aGVybiByZWdpb24gb2YgQ291bnRyeS5JIGZvdW5kIGhpZ2hjaGFydGVyIHZlcnkgZ29vZCB2aXN1YWxpemF0aW9uIHBhY2thZ2Ugd2l0aCBsb3RzIG9mIGN1c3RvbWl6YXRpb24gZmVhdHVyZXMuIEkgd2lsbCBmdXJ0aGVyIHVzZSB0aGlzIHRvb2wgdG8gc2hvdyB0aGUgaW50ZXJhY3RpdmUgdmlzdWFsaXphdGlvbnMuCgo=