¿Qué es tidyverse?
Es una colección de paquetes de R que son diseñados para la Ciencia de Datos.
Todos los paquetes utilizan las misma filosofía de diseño, gramática y estructura de datos.
library(tidyverse)
[37m── [1mAttaching packages[22m ───────────────────────────── tidyverse 1.2.1 ──[39m
[37m[32m✔[37m [34mtibble [37m 1.4.2 [32m✔[37m [34mpurrr [37m 0.2.5
[32m✔[37m [34mreadr [37m 1.1.1 [32m✔[37m [34mstringr[37m 1.3.1
[32m✔[37m [34mtibble [37m 1.4.2 [32m✔[37m [34mforcats[37m 0.3.0[39m
[37m── [1mConflicts[22m ──────────────────────────────── tidyverse_conflicts() ──
[31m✖[37m [34mdplyr[37m::[32mfilter()[37m masks [34mstats[37m::filter()
[31m✖[37m [34mdplyr[37m::[32mlag()[37m masks [34mstats[37m::lag()[39m
datos <- read.csv("cuarto_grado.csv", header = TRUE, sep = ",")
datos
dfc <- datos %>%
separate(nombre, into = c("Apellido", "Nombre")) %>%
separate(fecha, into = c("Dia", "Mes", "Año"), convert = TRUE) %>%
gather(Materia, Puntos, matematica, ingles)
dfc
dfc %>%
group_by(Materia) %>%
summarise(promedio = mean(Puntos))
dfc %>%
group_by(Materia, Nombre, Apellido) %>%
summarise(promedio = mean(Puntos))
dfc %>%
filter(Materia == "ingles") %>%
group_by(Nombre, Apellido) %>%
summarise(promedio = mean(Puntos))
dfc %>%
filter(Materia == "matematica") %>%
group_by(Nombre, Apellido) %>%
summarise(promedio = mean(Puntos))
dfc %>%
filter(Materia == "matematica") %>%
group_by(Nombre, Apellido) %>%
summarise(promedio = mean(Puntos)) %>%
arrange(desc(promedio))
dfc %>%
group_by(Materia, Mes) %>%
summarise(Promedio = mean(Puntos)) %>%
ggplot() +
geom_line(mapping = aes(x=Mes, y=Promedio,
group = Materia,
color = Materia)) +
labs(title = "Promedio Mensuales por Materia")

NA
LS0tCnRpdGxlOiAiVXNvIELDoXNpY28gZGUgdGlkeXZlcnNlIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAogIGh0bWxfZG9jdW1lbnQ6CiAgICBkZl9wcmludDogcGFnZWQKICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQKLS0tCgojIyDCv1F1w6kgZXMgdGlkeXZlcnNlPwoKRXMgdW5hIGNvbGVjY2nDs24gZGUgcGFxdWV0ZXMgZGUgKipSKiogcXVlIHNvbiBkaXNlw7FhZG9zIHBhcmEgbGEgKkNpZW5jaWEgZGUgRGF0b3MqLgoKVG9kb3MgbG9zIHBhcXVldGVzIHV0aWxpemFuIGxhcyBtaXNtYSBmaWxvc29mw61hIGRlIGRpc2XDsW8sIGdyYW3DoXRpY2EgeSBlc3RydWN0dXJhIGRlIGRhdG9zLgoKCgpgYGB7ciB3YXJuaW5nPUZBTFNFfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKYGBgCgpgYGB7cn0KZGF0b3MgPC0gcmVhZC5jc3YoImN1YXJ0b19ncmFkby5jc3YiLCBoZWFkZXIgPSBUUlVFLCBzZXAgPSAiLCIpCmRhdG9zCmBgYAoKYGBge3J9CmRmYyA8LSBkYXRvcyAlPiUgCiAgc2VwYXJhdGUobm9tYnJlLCBpbnRvID0gYygiQXBlbGxpZG8iLCAiTm9tYnJlIikpICU+JSAKICBzZXBhcmF0ZShmZWNoYSwgaW50byA9IGMoIkRpYSIsICJNZXMiLCAiQcOxbyIpLCBjb252ZXJ0ID0gVFJVRSkgJT4lIAogIGdhdGhlcihNYXRlcmlhLCBQdW50b3MsIG1hdGVtYXRpY2EsIGluZ2xlcykKZGZjCmBgYAoKYGBge3J9CmRmYyAlPiUgCiAgZ3JvdXBfYnkoTWF0ZXJpYSkgJT4lIAogIHN1bW1hcmlzZShwcm9tZWRpbyA9IG1lYW4oUHVudG9zKSkKYGBgCgpgYGB7cn0KZGZjICU+JSAKICBncm91cF9ieShNYXRlcmlhLCBOb21icmUsIEFwZWxsaWRvKSAlPiUgCiAgc3VtbWFyaXNlKHByb21lZGlvID0gbWVhbihQdW50b3MpKQpgYGAKCmBgYHtyfQpkZmMgJT4lIAogIGZpbHRlcihNYXRlcmlhID09ICJpbmdsZXMiKSAlPiUgCiAgZ3JvdXBfYnkoTm9tYnJlLCBBcGVsbGlkbykgJT4lIAogIHN1bW1hcmlzZShwcm9tZWRpbyA9IG1lYW4oUHVudG9zKSkKYGBgCgpgYGB7cn0KZGZjICU+JSAKICBmaWx0ZXIoTWF0ZXJpYSA9PSAibWF0ZW1hdGljYSIpICU+JSAKICBncm91cF9ieShOb21icmUsIEFwZWxsaWRvKSAlPiUgCiAgc3VtbWFyaXNlKHByb21lZGlvID0gbWVhbihQdW50b3MpKQpgYGAKCmBgYHtyfQpkZmMgJT4lIAogIGZpbHRlcihNYXRlcmlhID09ICJtYXRlbWF0aWNhIikgJT4lIAogIGdyb3VwX2J5KE5vbWJyZSwgQXBlbGxpZG8pICU+JSAKICBzdW1tYXJpc2UocHJvbWVkaW8gPSBtZWFuKFB1bnRvcykpICU+JSAKICBhcnJhbmdlKGRlc2MocHJvbWVkaW8pKQpgYGAKCgpgYGB7cn0KZGZjICU+JSAKICBncm91cF9ieShNYXRlcmlhLCBNZXMpICU+JSAKICBzdW1tYXJpc2UoUHJvbWVkaW8gPSBtZWFuKFB1bnRvcykpICU+JSAKICBnZ3Bsb3QoKSArCiAgZ2VvbV9saW5lKG1hcHBpbmcgPSBhZXMoeD1NZXMsIHk9UHJvbWVkaW8sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBncm91cCA9IE1hdGVyaWEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb2xvciA9IE1hdGVyaWEpKSArCiAgbGFicyh0aXRsZSA9ICJQcm9tZWRpbyBNZW5zdWFsZXMgcG9yIE1hdGVyaWEiKQogIApgYGAK