suppressMessages(library(readr))
suppressMessages(library(ggplot2))
suppressMessages(library(gridExtra))
suppressMessages(library(tidyverse))
suppressMessages(library(lazyeval))

dataset <- suppressMessages(read_csv("regression-results.csv"))
## Warning: Duplicated column names deduplicated: 'Accuracy' =>
## 'Accuracy_1' [28]
dataset[,8:ncol(dataset)] <- round(dataset[,8:ncol(dataset)],digits = 3)
stations <- unique(dataset$var)
algoritmos <- unique(dataset$alg)
metrics <- c("MAE","RMSE","R2")
#' ## Carga dataset
#' CreaciĂ³n de dataset genĂ©rico para resultados clasificaciĂ³n
df <- dataset %>%
  unite(dataset, 
        col=label,c("dataset","var","config.train","config.vars","T","alg"),
        sep = "-",remove=FALSE) %>% 
  select(label,dataset,var,config.train,config.vars,T,alg,MAE,RMSE,R2) 
df

Performance de algoritmos por cada estaciĂ³n. ( no noto grandes diferencias…particularidades en cada estaciĂ³n)

p <-ggplot(aes(y = MAE , x = var, fill = alg), data = df) + geom_boxplot() + coord_flip()
print(p)

p <-ggplot(aes(y = RMSE , x = var, fill = alg), data = df) + geom_boxplot() + coord_flip()
print(p)

p <-ggplot(aes(y = R2 , x = var, fill = alg), data = df) + 
  geom_boxplot() + coord_flip() #+ labs(fill="T")
print(p)

Por cada estacion: local vs all Evidentemente, la config all disminuye error en todas las estaciones.

p <-ggplot(aes(y = MAE , x = var, fill = config.vars), data = df) + geom_boxplot() + coord_flip()
print(p)

p <-ggplot(aes(y = RMSE , x = var, fill = config.vars), data = df) + geom_boxplot() + coord_flip()
print(p)

#png("plot-estaciones-vs-algs-F1-filtro-datasetDacc-T1.png")
p <-ggplot(aes(y = R2 , x = var, fill = config.vars), data = df) + 
  geom_boxplot() + coord_flip() #+ labs(fill="T")

print(p)