Once the negation tag has been added to words, the the remaining text was exported for further POS Tagging. The following subsection provides an overview on the POS Tagging process.
#import os
#import numpy as np
#import pandas as pd
#nltk.download()
#os.chdir("/Users/lisaherzog/Google Drive/UM/Smart Services/Thesis/Thesis/Code/Feature Set3/Input")
#import nltk
#from nltk.corpus import stopwords
#from nltk.tokenize import word_tokenize, sent_tokenize
#stop_words = set(stopwords.words('english'))
#PosTagging=[]
#for i in range(0,4735):
#txt = Text[i]
#tokenized = sent_tokenize(txt)
#taggedtokens =[]
#PosTagging.append(taggedtokens)
#for j in tokenized:
#wordList = nltk.word_tokenize(j)
#wordList= [w for w in wordList if not w in stop_words]
#tagged=nltk.pos_tag(wordList)
#taggedtokens.append(tagged)
#PosTaggedText = []
#for j in range(0,4735):
#Review = PosTagging[j]
#Review = sum(Review,[])
#PosTaggedText.append(Review)