setwd("~/Google Drive/UM/Smart Services/Thesis/Thesis/Code/Naive Bayes/2.Feature Set 1/TP/50")
#install.packages("naivebayes")
library(dplyr)
## Warning: Installed Rcpp (0.12.16) different from Rcpp used to build dplyr (0.12.11).
## Please reinstall dplyr to avoid random crashes or undefined behavior.
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(psych)
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
library(e1071)
library(readxl)
#Import Labels
Labels <- read_excel("~/Google Drive/UM/Smart Services/Thesis/Thesis/Code/Naive Bayes/1.Labels/Source Data.xlsx")
Label <- Labels$Score
#Import Features
Features <- read.csv("~/Google Drive/UM/Smart Services/Thesis/Thesis/Code/Naive Bayes/2.Feature Set 1/TP/50/Feature Set 1: 50th TP.csv")
Features <- Features[-1]
#Class 2
Label2 <- list()
for(i in 1:1000){
if(Label[i]==3| Label[i]==4){
Label2[i] <- 1
}else{
Label2[i] <- 0
}
}
#As Factor
Label2 <- as.factor(unlist(Label2))
#Class 3
Label3 <- list()
for(i in 1:1000){
if(Label[i]==5| Label[i]==6){
Label3[i] <- 1
}else{
Label3[i] <- 0
}
}
#As Factor
Label3 <- as.factor(unlist(Label3))
#Class 4
Label4 <- list()
for(i in 1:1000){
if(Label[i]==7| Label[i]==8){
Label4[i] <- 1
}else{
Label4[i] <- 0
}
}
#As Factor
Label4 <- as.factor(unlist(Label4))
#Class 5
Label5 <- list()
for(i in 1:1000){
if(Label[i]==9| Label[i]==10){
Label5[i] <- 1
}else{
Label5[i] <- 0
}
}
#As Factor
Label5 <- as.factor(unlist(Label5))
#All Labels
All <- list()
for(i in 1:1000){
if(Label[i]==9| Label[i]==10){
All[i] <- 5
}else if(Label[i]==7| Label[i]==8){
All[i] <- 4
}else if(Label[i]==5| Label[i]==6){
All[i] <- 3
}else{
All[i] <- 2
}
}
#As Factor
All <- as.factor(unlist(All))
#Control
Control.df <- data.frame(matrix(seq(1,1000),ncol=1,nrow=1000))
Control.df$Actual <- Label
Control.df$All <- All
Control.df$Label2 <- Label2
Control.df$Label3 <- Label3
Control.df$Label4 <- Label4
Control.df$Label5 <- Label5
Control.df[1:10,2:7]
## Actual All Label2 Label3 Label4 Label5
## 1 3 2 1 0 0 0
## 2 8 4 0 0 1 0
## 3 7 4 0 0 1 0
## 4 4 2 1 0 0 0
## 5 7 4 0 0 1 0
## 6 7 4 0 0 1 0
## 7 5 3 0 1 0 0
## 8 10 5 0 0 0 1
## 9 7 4 0 0 1 0
## 10 8 4 0 0 1 0
#Transform Integer to Factor
for(i in 1:1101){
Features[,i] <- as.factor(Features[,i])
}
str(Features)
## 'data.frame': 1000 obs. of 1101 variables:
## $ abl : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 1 1 1 1 ...
## $ absolut : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ accept : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ access : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ accommod : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ acknowledg : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ across : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ actual : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 2 1 ...
## $ addit : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ adequ : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ adjac : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ adult : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ advanc : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ adverti : Factor w/ 2 levels "0","1": 1 1 1 1 2 1 1 1 1 1 ...
## $ advi : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ advic : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ affect : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ after : Factor w/ 2 levels "0","1": 1 1 1 1 2 1 1 1 1 1 ...
## $ air : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ aircondit : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 2 ...
## $ airi : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ airport : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ alarm : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ all : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ alloc : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ allow : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ alreadi : Factor w/ 2 levels "0","1": 1 1 1 2 1 1 1 1 1 1 ...
## $ also : Factor w/ 2 levels "0","1": 1 1 1 2 1 1 2 1 2 1 ...
## $ altern : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ although : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ alway : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ amaz : Factor w/ 2 levels "0","1": 1 1 1 1 2 1 1 1 1 1 ...
## $ amen : Factor w/ 2 levels "0","1": 1 2 1 1 1 1 1 1 1 1 ...
## $ american : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ amsterdam : Factor w/ 2 levels "0","1": 1 2 1 2 1 1 1 1 1 1 ...
## $ and : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 1 1 1 1 ...
## $ annoy : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 1 1 1 1 ...
## $ anoth : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ answer : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ anymor : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ anyon : Factor w/ 2 levels "0","1": 1 2 1 1 1 1 1 1 1 1 ...
## $ anyth : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ anyway : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ anywh : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ apart : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
## $ apolog : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ appear : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ appoint : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ appreci : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ approach : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ architectur : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ area : Factor w/ 2 levels "0","1": 1 1 1 2 1 1 1 1 1 1 ...
## $ arena : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ around : Factor w/ 2 levels "0","1": 1 1 1 2 1 1 1 1 1 1 ...
## $ arrang : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ arriv : Factor w/ 2 levels "0","1": 2 1 1 1 2 1 1 1 1 1 ...
## $ ask : Factor w/ 2 levels "0","1": 2 1 2 1 1 1 1 1 1 1 ...
## $ aspect : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ assum : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ atm : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ atmosph : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ attend : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ attent : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ attic : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ attitud : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ attract : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ avail : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 1 1 1 1 ...
## $ averag : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ avoid : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ awar : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ away : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ awesom : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 1 1 ...
## $ back : Factor w/ 2 levels "0","1": 1 2 2 1 1 1 1 1 1 1 ...
## $ bacon : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ bad : Factor w/ 2 levels "0","1": 1 1 1 2 1 1 1 1 1 1 ...
## $ bag : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ bake : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ bang : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ bank : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ bar : Factor w/ 2 levels "0","1": 1 1 2 2 1 1 1 1 1 1 ...
## $ bare : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ base : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ basement : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ basic : Factor w/ 2 levels "0","1": 1 1 2 1 1 1 1 1 1 1 ...
## $ bath : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ bathroom : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ bathtub : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ beauti : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 2 1 1 1 ...
## $ bed : Factor w/ 2 levels "0","1": 1 1 1 2 1 1 2 1 1 2 ...
## $ bedroom : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ beer : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ begin : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 1 1 1 1 ...
## $ behind : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ believ : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ benefit : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ besid : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ best : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 1 1 1 1 ...
## $ better : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ big : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 1 1 1 2 ...
## [list output truncated]
#Features
set.seed(1234)
ind <- sample(2,nrow(Features),replace = T, prob =c(0.8,0.2))
train <- Features[ind == 1,]
test <- Features[ind ==2,]
train.labels.2 <- Label2[ind == 1]
test.labels.2 <- Label2[ind ==2]
train.labels.3 <- Label3[ind == 1]
test.labels.3 <- Label3[ind ==2]
train.labels.4 <- Label4[ind == 1]
test.labels.4 <- Label4[ind ==2]
train.labels.5 <- Label5[ind == 1]
test.labels.5 <- Label5[ind ==2]
train.labels <- All[ind == 1]
test.labels <- All[ind ==2]
data.frame(train.labels,train.labels.2,train.labels.3,train.labels.4,train.labels.5)
## train.labels train.labels.2 train.labels.3 train.labels.4
## 1 2 1 0 0
## 2 4 0 0 1
## 3 4 0 0 1
## 4 2 1 0 0
## 5 4 0 0 1
## 6 3 0 1 0
## 7 5 0 0 0
## 8 4 0 0 1
## 9 4 0 0 1
## 10 5 0 0 0
## 11 3 0 1 0
## 12 3 0 1 0
## 13 5 0 0 0
## 14 3 0 1 0
## 15 4 0 0 1
## 16 4 0 0 1
## 17 4 0 0 1
## 18 3 0 1 0
## 19 2 1 0 0
## 20 3 0 1 0
## 21 5 0 0 0
## 22 5 0 0 0
## 23 5 0 0 0
## 24 5 0 0 0
## 25 5 0 0 0
## 26 4 0 0 1
## 27 2 1 0 0
## 28 4 0 0 1
## 29 4 0 0 1
## 30 4 0 0 1
## 31 4 0 0 1
## 32 5 0 0 0
## 33 4 0 0 1
## 34 4 0 0 1
## 35 2 1 0 0
## 36 5 0 0 0
## 37 2 1 0 0
## 38 4 0 0 1
## 39 2 1 0 0
## 40 4 0 0 1
## 41 5 0 0 0
## 42 3 0 1 0
## 43 5 0 0 0
## 44 4 0 0 1
## 45 5 0 0 0
## 46 5 0 0 0
## 47 4 0 0 1
## 48 5 0 0 0
## 49 4 0 0 1
## 50 4 0 0 1
## 51 4 0 0 1
## 52 4 0 0 1
## 53 4 0 0 1
## 54 3 0 1 0
## 55 5 0 0 0
## 56 5 0 0 0
## 57 5 0 0 0
## 58 4 0 0 1
## 59 4 0 0 1
## 60 5 0 0 0
## 61 4 0 0 1
## 62 4 0 0 1
## 63 3 0 1 0
## 64 4 0 0 1
## 65 5 0 0 0
## 66 4 0 0 1
## 67 4 0 0 1
## 68 5 0 0 0
## 69 5 0 0 0
## 70 5 0 0 0
## 71 3 0 1 0
## 72 5 0 0 0
## 73 4 0 0 1
## 74 4 0 0 1
## 75 3 0 1 0
## 76 3 0 1 0
## 77 2 1 0 0
## 78 3 0 1 0
## 79 2 1 0 0
## 80 4 0 0 1
## 81 5 0 0 0
## 82 5 0 0 0
## 83 5 0 0 0
## 84 3 0 1 0
## 85 3 0 1 0
## 86 3 0 1 0
## 87 3 0 1 0
## 88 5 0 0 0
## 89 5 0 0 0
## 90 4 0 0 1
## 91 5 0 0 0
## 92 4 0 0 1
## 93 2 1 0 0
## 94 5 0 0 0
## 95 5 0 0 0
## 96 4 0 0 1
## 97 3 0 1 0
## 98 5 0 0 0
## 99 5 0 0 0
## 100 5 0 0 0
## 101 4 0 0 1
## 102 4 0 0 1
## 103 3 0 1 0
## 104 3 0 1 0
## 105 4 0 0 1
## 106 3 0 1 0
## 107 5 0 0 0
## 108 5 0 0 0
## 109 4 0 0 1
## 110 4 0 0 1
## 111 4 0 0 1
## 112 5 0 0 0
## 113 5 0 0 0
## 114 5 0 0 0
## 115 3 0 1 0
## 116 5 0 0 0
## 117 4 0 0 1
## 118 3 0 1 0
## 119 5 0 0 0
## 120 5 0 0 0
## 121 2 1 0 0
## 122 3 0 1 0
## 123 5 0 0 0
## 124 3 0 1 0
## 125 5 0 0 0
## 126 4 0 0 1
## 127 4 0 0 1
## 128 4 0 0 1
## 129 5 0 0 0
## 130 2 1 0 0
## 131 5 0 0 0
## 132 4 0 0 1
## 133 3 0 1 0
## 134 5 0 0 0
## 135 4 0 0 1
## 136 5 0 0 0
## 137 4 0 0 1
## 138 4 0 0 1
## 139 2 1 0 0
## 140 5 0 0 0
## 141 4 0 0 1
## 142 2 1 0 0
## 143 5 0 0 0
## 144 5 0 0 0
## 145 4 0 0 1
## 146 5 0 0 0
## 147 5 0 0 0
## 148 5 0 0 0
## 149 4 0 0 1
## 150 4 0 0 1
## 151 4 0 0 1
## 152 3 0 1 0
## 153 4 0 0 1
## 154 4 0 0 1
## 155 2 1 0 0
## 156 5 0 0 0
## 157 2 1 0 0
## 158 3 0 1 0
## 159 5 0 0 0
## 160 5 0 0 0
## 161 4 0 0 1
## 162 5 0 0 0
## 163 5 0 0 0
## 164 3 0 1 0
## 165 3 0 1 0
## 166 5 0 0 0
## 167 4 0 0 1
## 168 3 0 1 0
## 169 5 0 0 0
## 170 4 0 0 1
## 171 5 0 0 0
## 172 5 0 0 0
## 173 3 0 1 0
## 174 4 0 0 1
## 175 4 0 0 1
## 176 5 0 0 0
## 177 3 0 1 0
## 178 5 0 0 0
## 179 5 0 0 0
## 180 5 0 0 0
## 181 5 0 0 0
## 182 5 0 0 0
## 183 5 0 0 0
## 184 5 0 0 0
## 185 4 0 0 1
## 186 5 0 0 0
## 187 5 0 0 0
## 188 5 0 0 0
## 189 5 0 0 0
## 190 4 0 0 1
## 191 5 0 0 0
## 192 4 0 0 1
## 193 5 0 0 0
## 194 4 0 0 1
## 195 4 0 0 1
## 196 4 0 0 1
## 197 5 0 0 0
## 198 5 0 0 0
## 199 5 0 0 0
## 200 5 0 0 0
## 201 4 0 0 1
## 202 4 0 0 1
## 203 4 0 0 1
## 204 3 0 1 0
## 205 5 0 0 0
## 206 5 0 0 0
## 207 5 0 0 0
## 208 3 0 1 0
## 209 5 0 0 0
## 210 4 0 0 1
## 211 5 0 0 0
## 212 3 0 1 0
## 213 4 0 0 1
## 214 4 0 0 1
## 215 3 0 1 0
## 216 4 0 0 1
## 217 4 0 0 1
## 218 5 0 0 0
## 219 2 1 0 0
## 220 5 0 0 0
## 221 5 0 0 0
## 222 5 0 0 0
## 223 4 0 0 1
## 224 5 0 0 0
## 225 5 0 0 0
## 226 5 0 0 0
## 227 5 0 0 0
## 228 5 0 0 0
## 229 2 1 0 0
## 230 5 0 0 0
## 231 4 0 0 1
## 232 4 0 0 1
## 233 5 0 0 0
## 234 5 0 0 0
## 235 5 0 0 0
## 236 5 0 0 0
## 237 5 0 0 0
## 238 5 0 0 0
## 239 5 0 0 0
## 240 5 0 0 0
## 241 4 0 0 1
## 242 5 0 0 0
## 243 3 0 1 0
## 244 3 0 1 0
## 245 3 0 1 0
## 246 5 0 0 0
## 247 5 0 0 0
## 248 3 0 1 0
## 249 5 0 0 0
## 250 4 0 0 1
## 251 5 0 0 0
## 252 5 0 0 0
## 253 5 0 0 0
## 254 5 0 0 0
## 255 3 0 1 0
## 256 4 0 0 1
## 257 4 0 0 1
## 258 5 0 0 0
## 259 5 0 0 0
## 260 5 0 0 0
## 261 4 0 0 1
## 262 4 0 0 1
## 263 5 0 0 0
## 264 5 0 0 0
## 265 2 1 0 0
## 266 4 0 0 1
## 267 2 1 0 0
## 268 4 0 0 1
## 269 2 1 0 0
## 270 5 0 0 0
## 271 4 0 0 1
## 272 2 1 0 0
## 273 5 0 0 0
## 274 3 0 1 0
## 275 3 0 1 0
## 276 5 0 0 0
## 277 2 1 0 0
## 278 5 0 0 0
## 279 4 0 0 1
## 280 3 0 1 0
## 281 5 0 0 0
## 282 5 0 0 0
## 283 3 0 1 0
## 284 5 0 0 0
## 285 5 0 0 0
## 286 3 0 1 0
## 287 3 0 1 0
## 288 5 0 0 0
## 289 5 0 0 0
## 290 5 0 0 0
## 291 3 0 1 0
## 292 5 0 0 0
## 293 5 0 0 0
## 294 5 0 0 0
## 295 5 0 0 0
## 296 3 0 1 0
## 297 3 0 1 0
## 298 4 0 0 1
## 299 4 0 0 1
## 300 4 0 0 1
## 301 4 0 0 1
## 302 5 0 0 0
## 303 5 0 0 0
## 304 4 0 0 1
## 305 3 0 1 0
## 306 5 0 0 0
## 307 5 0 0 0
## 308 3 0 1 0
## 309 5 0 0 0
## 310 4 0 0 1
## 311 5 0 0 0
## 312 5 0 0 0
## 313 5 0 0 0
## 314 5 0 0 0
## 315 3 0 1 0
## 316 5 0 0 0
## 317 5 0 0 0
## 318 5 0 0 0
## 319 5 0 0 0
## 320 4 0 0 1
## 321 5 0 0 0
## 322 5 0 0 0
## 323 4 0 0 1
## 324 5 0 0 0
## 325 5 0 0 0
## 326 5 0 0 0
## 327 5 0 0 0
## 328 5 0 0 0
## 329 5 0 0 0
## 330 5 0 0 0
## 331 5 0 0 0
## 332 4 0 0 1
## 333 5 0 0 0
## 334 5 0 0 0
## 335 4 0 0 1
## 336 5 0 0 0
## 337 4 0 0 1
## 338 4 0 0 1
## 339 3 0 1 0
## 340 5 0 0 0
## 341 4 0 0 1
## 342 5 0 0 0
## 343 4 0 0 1
## 344 4 0 0 1
## 345 5 0 0 0
## 346 3 0 1 0
## 347 4 0 0 1
## 348 4 0 0 1
## 349 4 0 0 1
## 350 5 0 0 0
## 351 5 0 0 0
## 352 4 0 0 1
## 353 4 0 0 1
## 354 5 0 0 0
## 355 4 0 0 1
## 356 4 0 0 1
## 357 5 0 0 0
## 358 5 0 0 0
## 359 5 0 0 0
## 360 5 0 0 0
## 361 5 0 0 0
## 362 4 0 0 1
## 363 5 0 0 0
## 364 4 0 0 1
## 365 5 0 0 0
## 366 5 0 0 0
## 367 5 0 0 0
## 368 5 0 0 0
## 369 4 0 0 1
## 370 5 0 0 0
## 371 4 0 0 1
## 372 5 0 0 0
## 373 3 0 1 0
## 374 4 0 0 1
## 375 5 0 0 0
## 376 5 0 0 0
## 377 4 0 0 1
## 378 4 0 0 1
## 379 4 0 0 1
## 380 3 0 1 0
## 381 5 0 0 0
## 382 4 0 0 1
## 383 5 0 0 0
## 384 3 0 1 0
## 385 3 0 1 0
## 386 4 0 0 1
## 387 5 0 0 0
## 388 5 0 0 0
## 389 3 0 1 0
## 390 4 0 0 1
## 391 4 0 0 1
## 392 5 0 0 0
## 393 3 0 1 0
## 394 4 0 0 1
## 395 5 0 0 0
## 396 5 0 0 0
## 397 3 0 1 0
## 398 4 0 0 1
## 399 4 0 0 1
## 400 4 0 0 1
## 401 5 0 0 0
## 402 5 0 0 0
## 403 5 0 0 0
## 404 5 0 0 0
## 405 5 0 0 0
## 406 3 0 1 0
## 407 5 0 0 0
## 408 5 0 0 0
## 409 4 0 0 1
## 410 4 0 0 1
## 411 5 0 0 0
## 412 5 0 0 0
## 413 5 0 0 0
## 414 2 1 0 0
## 415 5 0 0 0
## 416 4 0 0 1
## 417 5 0 0 0
## 418 4 0 0 1
## 419 5 0 0 0
## 420 4 0 0 1
## 421 5 0 0 0
## 422 5 0 0 0
## 423 3 0 1 0
## 424 5 0 0 0
## 425 4 0 0 1
## 426 4 0 0 1
## 427 5 0 0 0
## 428 5 0 0 0
## 429 3 0 1 0
## 430 5 0 0 0
## 431 5 0 0 0
## 432 5 0 0 0
## 433 3 0 1 0
## 434 4 0 0 1
## 435 4 0 0 1
## 436 5 0 0 0
## 437 4 0 0 1
## 438 4 0 0 1
## 439 5 0 0 0
## 440 4 0 0 1
## 441 5 0 0 0
## 442 3 0 1 0
## 443 5 0 0 0
## 444 4 0 0 1
## 445 5 0 0 0
## 446 5 0 0 0
## 447 5 0 0 0
## 448 5 0 0 0
## 449 5 0 0 0
## 450 5 0 0 0
## 451 5 0 0 0
## 452 5 0 0 0
## 453 5 0 0 0
## 454 5 0 0 0
## 455 5 0 0 0
## 456 5 0 0 0
## 457 5 0 0 0
## 458 5 0 0 0
## 459 4 0 0 1
## 460 5 0 0 0
## 461 5 0 0 0
## 462 5 0 0 0
## 463 5 0 0 0
## 464 3 0 1 0
## 465 5 0 0 0
## 466 5 0 0 0
## 467 4 0 0 1
## 468 5 0 0 0
## 469 4 0 0 1
## 470 5 0 0 0
## 471 5 0 0 0
## 472 5 0 0 0
## 473 5 0 0 0
## 474 4 0 0 1
## 475 5 0 0 0
## 476 4 0 0 1
## 477 4 0 0 1
## 478 5 0 0 0
## 479 2 1 0 0
## 480 5 0 0 0
## 481 4 0 0 1
## 482 5 0 0 0
## 483 5 0 0 0
## 484 5 0 0 0
## 485 5 0 0 0
## 486 5 0 0 0
## 487 5 0 0 0
## 488 3 0 1 0
## 489 5 0 0 0
## 490 3 0 1 0
## 491 5 0 0 0
## 492 5 0 0 0
## 493 5 0 0 0
## 494 5 0 0 0
## 495 4 0 0 1
## 496 5 0 0 0
## 497 3 0 1 0
## 498 4 0 0 1
## 499 4 0 0 1
## 500 5 0 0 0
## 501 5 0 0 0
## 502 4 0 0 1
## 503 4 0 0 1
## 504 4 0 0 1
## 505 5 0 0 0
## 506 5 0 0 0
## 507 4 0 0 1
## 508 5 0 0 0
## 509 4 0 0 1
## 510 5 0 0 0
## 511 4 0 0 1
## 512 5 0 0 0
## 513 5 0 0 0
## 514 5 0 0 0
## 515 5 0 0 0
## 516 5 0 0 0
## 517 4 0 0 1
## 518 4 0 0 1
## 519 5 0 0 0
## 520 2 1 0 0
## 521 2 1 0 0
## 522 4 0 0 1
## 523 5 0 0 0
## 524 4 0 0 1
## 525 5 0 0 0
## 526 4 0 0 1
## 527 5 0 0 0
## 528 4 0 0 1
## 529 4 0 0 1
## 530 4 0 0 1
## 531 4 0 0 1
## 532 5 0 0 0
## 533 4 0 0 1
## 534 4 0 0 1
## 535 5 0 0 0
## 536 5 0 0 0
## 537 4 0 0 1
## 538 5 0 0 0
## 539 5 0 0 0
## 540 3 0 1 0
## 541 5 0 0 0
## 542 5 0 0 0
## 543 4 0 0 1
## 544 4 0 0 1
## 545 5 0 0 0
## 546 5 0 0 0
## 547 5 0 0 0
## 548 4 0 0 1
## 549 5 0 0 0
## 550 5 0 0 0
## 551 4 0 0 1
## 552 5 0 0 0
## 553 5 0 0 0
## 554 4 0 0 1
## 555 3 0 1 0
## 556 4 0 0 1
## 557 3 0 1 0
## 558 4 0 0 1
## 559 4 0 0 1
## 560 5 0 0 0
## 561 5 0 0 0
## 562 5 0 0 0
## 563 4 0 0 1
## 564 4 0 0 1
## 565 5 0 0 0
## 566 4 0 0 1
## 567 4 0 0 1
## 568 5 0 0 0
## 569 3 0 1 0
## 570 5 0 0 0
## 571 4 0 0 1
## 572 5 0 0 0
## 573 4 0 0 1
## 574 4 0 0 1
## 575 5 0 0 0
## 576 5 0 0 0
## 577 5 0 0 0
## 578 5 0 0 0
## 579 5 0 0 0
## 580 5 0 0 0
## 581 5 0 0 0
## 582 4 0 0 1
## 583 4 0 0 1
## 584 5 0 0 0
## 585 3 0 1 0
## 586 5 0 0 0
## 587 5 0 0 0
## 588 4 0 0 1
## 589 5 0 0 0
## 590 5 0 0 0
## 591 5 0 0 0
## 592 4 0 0 1
## 593 5 0 0 0
## 594 5 0 0 0
## 595 5 0 0 0
## 596 5 0 0 0
## 597 4 0 0 1
## 598 4 0 0 1
## 599 3 0 1 0
## 600 4 0 0 1
## 601 5 0 0 0
## 602 5 0 0 0
## 603 5 0 0 0
## 604 4 0 0 1
## 605 4 0 0 1
## 606 5 0 0 0
## 607 5 0 0 0
## 608 3 0 1 0
## 609 4 0 0 1
## 610 5 0 0 0
## 611 5 0 0 0
## 612 4 0 0 1
## 613 5 0 0 0
## 614 5 0 0 0
## 615 5 0 0 0
## 616 5 0 0 0
## 617 3 0 1 0
## 618 5 0 0 0
## 619 4 0 0 1
## 620 4 0 0 1
## 621 5 0 0 0
## 622 4 0 0 1
## 623 5 0 0 0
## 624 4 0 0 1
## 625 4 0 0 1
## 626 5 0 0 0
## 627 5 0 0 0
## 628 4 0 0 1
## 629 5 0 0 0
## 630 4 0 0 1
## 631 4 0 0 1
## 632 5 0 0 0
## 633 5 0 0 0
## 634 5 0 0 0
## 635 5 0 0 0
## 636 5 0 0 0
## 637 5 0 0 0
## 638 4 0 0 1
## 639 5 0 0 0
## 640 5 0 0 0
## 641 3 0 1 0
## 642 5 0 0 0
## 643 4 0 0 1
## 644 3 0 1 0
## 645 5 0 0 0
## 646 5 0 0 0
## 647 4 0 0 1
## 648 5 0 0 0
## 649 5 0 0 0
## 650 5 0 0 0
## 651 5 0 0 0
## 652 5 0 0 0
## 653 5 0 0 0
## 654 5 0 0 0
## 655 5 0 0 0
## 656 4 0 0 1
## 657 5 0 0 0
## 658 5 0 0 0
## 659 5 0 0 0
## 660 3 0 1 0
## 661 5 0 0 0
## 662 5 0 0 0
## 663 5 0 0 0
## 664 5 0 0 0
## 665 4 0 0 1
## 666 5 0 0 0
## 667 4 0 0 1
## 668 5 0 0 0
## 669 4 0 0 1
## 670 5 0 0 0
## 671 4 0 0 1
## 672 5 0 0 0
## 673 5 0 0 0
## 674 5 0 0 0
## 675 5 0 0 0
## 676 5 0 0 0
## 677 4 0 0 1
## 678 5 0 0 0
## 679 4 0 0 1
## 680 5 0 0 0
## 681 5 0 0 0
## 682 3 0 1 0
## 683 4 0 0 1
## 684 4 0 0 1
## 685 5 0 0 0
## 686 5 0 0 0
## 687 4 0 0 1
## 688 4 0 0 1
## 689 4 0 0 1
## 690 5 0 0 0
## 691 5 0 0 0
## 692 4 0 0 1
## 693 5 0 0 0
## 694 5 0 0 0
## 695 5 0 0 0
## 696 5 0 0 0
## 697 5 0 0 0
## 698 5 0 0 0
## 699 5 0 0 0
## 700 5 0 0 0
## 701 5 0 0 0
## 702 4 0 0 1
## 703 5 0 0 0
## 704 5 0 0 0
## 705 4 0 0 1
## 706 4 0 0 1
## 707 5 0 0 0
## 708 5 0 0 0
## 709 4 0 0 1
## 710 4 0 0 1
## 711 5 0 0 0
## 712 5 0 0 0
## 713 3 0 1 0
## 714 5 0 0 0
## 715 5 0 0 0
## 716 5 0 0 0
## 717 5 0 0 0
## 718 5 0 0 0
## 719 5 0 0 0
## 720 4 0 0 1
## 721 5 0 0 0
## 722 5 0 0 0
## 723 5 0 0 0
## 724 4 0 0 1
## 725 5 0 0 0
## 726 5 0 0 0
## 727 4 0 0 1
## 728 3 0 1 0
## 729 5 0 0 0
## 730 5 0 0 0
## 731 4 0 0 1
## 732 4 0 0 1
## 733 5 0 0 0
## 734 5 0 0 0
## 735 5 0 0 0
## 736 5 0 0 0
## 737 5 0 0 0
## 738 5 0 0 0
## 739 5 0 0 0
## 740 5 0 0 0
## 741 5 0 0 0
## 742 5 0 0 0
## 743 5 0 0 0
## 744 5 0 0 0
## 745 5 0 0 0
## 746 4 0 0 1
## 747 4 0 0 1
## 748 5 0 0 0
## 749 5 0 0 0
## 750 5 0 0 0
## 751 5 0 0 0
## 752 5 0 0 0
## 753 5 0 0 0
## 754 5 0 0 0
## 755 5 0 0 0
## 756 5 0 0 0
## 757 4 0 0 1
## 758 4 0 0 1
## 759 5 0 0 0
## 760 4 0 0 1
## 761 4 0 0 1
## 762 5 0 0 0
## 763 4 0 0 1
## 764 5 0 0 0
## 765 5 0 0 0
## 766 4 0 0 1
## 767 4 0 0 1
## 768 4 0 0 1
## 769 4 0 0 1
## 770 5 0 0 0
## 771 4 0 0 1
## 772 5 0 0 0
## 773 4 0 0 1
## 774 5 0 0 0
## 775 4 0 0 1
## 776 4 0 0 1
## 777 5 0 0 0
## 778 5 0 0 0
## 779 4 0 0 1
## 780 5 0 0 0
## 781 5 0 0 0
## 782 3 0 1 0
## 783 5 0 0 0
## 784 5 0 0 0
## 785 4 0 0 1
## 786 5 0 0 0
## 787 5 0 0 0
## 788 5 0 0 0
## 789 5 0 0 0
## 790 5 0 0 0
## 791 4 0 0 1
## 792 5 0 0 0
## train.labels.5
## 1 0
## 2 0
## 3 0
## 4 0
## 5 0
## 6 0
## 7 1
## 8 0
## 9 0
## 10 1
## 11 0
## 12 0
## 13 1
## 14 0
## 15 0
## 16 0
## 17 0
## 18 0
## 19 0
## 20 0
## 21 1
## 22 1
## 23 1
## 24 1
## 25 1
## 26 0
## 27 0
## 28 0
## 29 0
## 30 0
## 31 0
## 32 1
## 33 0
## 34 0
## 35 0
## 36 1
## 37 0
## 38 0
## 39 0
## 40 0
## 41 1
## 42 0
## 43 1
## 44 0
## 45 1
## 46 1
## 47 0
## 48 1
## 49 0
## 50 0
## 51 0
## 52 0
## 53 0
## 54 0
## 55 1
## 56 1
## 57 1
## 58 0
## 59 0
## 60 1
## 61 0
## 62 0
## 63 0
## 64 0
## 65 1
## 66 0
## 67 0
## 68 1
## 69 1
## 70 1
## 71 0
## 72 1
## 73 0
## 74 0
## 75 0
## 76 0
## 77 0
## 78 0
## 79 0
## 80 0
## 81 1
## 82 1
## 83 1
## 84 0
## 85 0
## 86 0
## 87 0
## 88 1
## 89 1
## 90 0
## 91 1
## 92 0
## 93 0
## 94 1
## 95 1
## 96 0
## 97 0
## 98 1
## 99 1
## 100 1
## 101 0
## 102 0
## 103 0
## 104 0
## 105 0
## 106 0
## 107 1
## 108 1
## 109 0
## 110 0
## 111 0
## 112 1
## 113 1
## 114 1
## 115 0
## 116 1
## 117 0
## 118 0
## 119 1
## 120 1
## 121 0
## 122 0
## 123 1
## 124 0
## 125 1
## 126 0
## 127 0
## 128 0
## 129 1
## 130 0
## 131 1
## 132 0
## 133 0
## 134 1
## 135 0
## 136 1
## 137 0
## 138 0
## 139 0
## 140 1
## 141 0
## 142 0
## 143 1
## 144 1
## 145 0
## 146 1
## 147 1
## 148 1
## 149 0
## 150 0
## 151 0
## 152 0
## 153 0
## 154 0
## 155 0
## 156 1
## 157 0
## 158 0
## 159 1
## 160 1
## 161 0
## 162 1
## 163 1
## 164 0
## 165 0
## 166 1
## 167 0
## 168 0
## 169 1
## 170 0
## 171 1
## 172 1
## 173 0
## 174 0
## 175 0
## 176 1
## 177 0
## 178 1
## 179 1
## 180 1
## 181 1
## 182 1
## 183 1
## 184 1
## 185 0
## 186 1
## 187 1
## 188 1
## 189 1
## 190 0
## 191 1
## 192 0
## 193 1
## 194 0
## 195 0
## 196 0
## 197 1
## 198 1
## 199 1
## 200 1
## 201 0
## 202 0
## 203 0
## 204 0
## 205 1
## 206 1
## 207 1
## 208 0
## 209 1
## 210 0
## 211 1
## 212 0
## 213 0
## 214 0
## 215 0
## 216 0
## 217 0
## 218 1
## 219 0
## 220 1
## 221 1
## 222 1
## 223 0
## 224 1
## 225 1
## 226 1
## 227 1
## 228 1
## 229 0
## 230 1
## 231 0
## 232 0
## 233 1
## 234 1
## 235 1
## 236 1
## 237 1
## 238 1
## 239 1
## 240 1
## 241 0
## 242 1
## 243 0
## 244 0
## 245 0
## 246 1
## 247 1
## 248 0
## 249 1
## 250 0
## 251 1
## 252 1
## 253 1
## 254 1
## 255 0
## 256 0
## 257 0
## 258 1
## 259 1
## 260 1
## 261 0
## 262 0
## 263 1
## 264 1
## 265 0
## 266 0
## 267 0
## 268 0
## 269 0
## 270 1
## 271 0
## 272 0
## 273 1
## 274 0
## 275 0
## 276 1
## 277 0
## 278 1
## 279 0
## 280 0
## 281 1
## 282 1
## 283 0
## 284 1
## 285 1
## 286 0
## 287 0
## 288 1
## 289 1
## 290 1
## 291 0
## 292 1
## 293 1
## 294 1
## 295 1
## 296 0
## 297 0
## 298 0
## 299 0
## 300 0
## 301 0
## 302 1
## 303 1
## 304 0
## 305 0
## 306 1
## 307 1
## 308 0
## 309 1
## 310 0
## 311 1
## 312 1
## 313 1
## 314 1
## 315 0
## 316 1
## 317 1
## 318 1
## 319 1
## 320 0
## 321 1
## 322 1
## 323 0
## 324 1
## 325 1
## 326 1
## 327 1
## 328 1
## 329 1
## 330 1
## 331 1
## 332 0
## 333 1
## 334 1
## 335 0
## 336 1
## 337 0
## 338 0
## 339 0
## 340 1
## 341 0
## 342 1
## 343 0
## 344 0
## 345 1
## 346 0
## 347 0
## 348 0
## 349 0
## 350 1
## 351 1
## 352 0
## 353 0
## 354 1
## 355 0
## 356 0
## 357 1
## 358 1
## 359 1
## 360 1
## 361 1
## 362 0
## 363 1
## 364 0
## 365 1
## 366 1
## 367 1
## 368 1
## 369 0
## 370 1
## 371 0
## 372 1
## 373 0
## 374 0
## 375 1
## 376 1
## 377 0
## 378 0
## 379 0
## 380 0
## 381 1
## 382 0
## 383 1
## 384 0
## 385 0
## 386 0
## 387 1
## 388 1
## 389 0
## 390 0
## 391 0
## 392 1
## 393 0
## 394 0
## 395 1
## 396 1
## 397 0
## 398 0
## 399 0
## 400 0
## 401 1
## 402 1
## 403 1
## 404 1
## 405 1
## 406 0
## 407 1
## 408 1
## 409 0
## 410 0
## 411 1
## 412 1
## 413 1
## 414 0
## 415 1
## 416 0
## 417 1
## 418 0
## 419 1
## 420 0
## 421 1
## 422 1
## 423 0
## 424 1
## 425 0
## 426 0
## 427 1
## 428 1
## 429 0
## 430 1
## 431 1
## 432 1
## 433 0
## 434 0
## 435 0
## 436 1
## 437 0
## 438 0
## 439 1
## 440 0
## 441 1
## 442 0
## 443 1
## 444 0
## 445 1
## 446 1
## 447 1
## 448 1
## 449 1
## 450 1
## 451 1
## 452 1
## 453 1
## 454 1
## 455 1
## 456 1
## 457 1
## 458 1
## 459 0
## 460 1
## 461 1
## 462 1
## 463 1
## 464 0
## 465 1
## 466 1
## 467 0
## 468 1
## 469 0
## 470 1
## 471 1
## 472 1
## 473 1
## 474 0
## 475 1
## 476 0
## 477 0
## 478 1
## 479 0
## 480 1
## 481 0
## 482 1
## 483 1
## 484 1
## 485 1
## 486 1
## 487 1
## 488 0
## 489 1
## 490 0
## 491 1
## 492 1
## 493 1
## 494 1
## 495 0
## 496 1
## 497 0
## 498 0
## 499 0
## 500 1
## 501 1
## 502 0
## 503 0
## 504 0
## 505 1
## 506 1
## 507 0
## 508 1
## 509 0
## 510 1
## 511 0
## 512 1
## 513 1
## 514 1
## 515 1
## 516 1
## 517 0
## 518 0
## 519 1
## 520 0
## 521 0
## 522 0
## 523 1
## 524 0
## 525 1
## 526 0
## 527 1
## 528 0
## 529 0
## 530 0
## 531 0
## 532 1
## 533 0
## 534 0
## 535 1
## 536 1
## 537 0
## 538 1
## 539 1
## 540 0
## 541 1
## 542 1
## 543 0
## 544 0
## 545 1
## 546 1
## 547 1
## 548 0
## 549 1
## 550 1
## 551 0
## 552 1
## 553 1
## 554 0
## 555 0
## 556 0
## 557 0
## 558 0
## 559 0
## 560 1
## 561 1
## 562 1
## 563 0
## 564 0
## 565 1
## 566 0
## 567 0
## 568 1
## 569 0
## 570 1
## 571 0
## 572 1
## 573 0
## 574 0
## 575 1
## 576 1
## 577 1
## 578 1
## 579 1
## 580 1
## 581 1
## 582 0
## 583 0
## 584 1
## 585 0
## 586 1
## 587 1
## 588 0
## 589 1
## 590 1
## 591 1
## 592 0
## 593 1
## 594 1
## 595 1
## 596 1
## 597 0
## 598 0
## 599 0
## 600 0
## 601 1
## 602 1
## 603 1
## 604 0
## 605 0
## 606 1
## 607 1
## 608 0
## 609 0
## 610 1
## 611 1
## 612 0
## 613 1
## 614 1
## 615 1
## 616 1
## 617 0
## 618 1
## 619 0
## 620 0
## 621 1
## 622 0
## 623 1
## 624 0
## 625 0
## 626 1
## 627 1
## 628 0
## 629 1
## 630 0
## 631 0
## 632 1
## 633 1
## 634 1
## 635 1
## 636 1
## 637 1
## 638 0
## 639 1
## 640 1
## 641 0
## 642 1
## 643 0
## 644 0
## 645 1
## 646 1
## 647 0
## 648 1
## 649 1
## 650 1
## 651 1
## 652 1
## 653 1
## 654 1
## 655 1
## 656 0
## 657 1
## 658 1
## 659 1
## 660 0
## 661 1
## 662 1
## 663 1
## 664 1
## 665 0
## 666 1
## 667 0
## 668 1
## 669 0
## 670 1
## 671 0
## 672 1
## 673 1
## 674 1
## 675 1
## 676 1
## 677 0
## 678 1
## 679 0
## 680 1
## 681 1
## 682 0
## 683 0
## 684 0
## 685 1
## 686 1
## 687 0
## 688 0
## 689 0
## 690 1
## 691 1
## 692 0
## 693 1
## 694 1
## 695 1
## 696 1
## 697 1
## 698 1
## 699 1
## 700 1
## 701 1
## 702 0
## 703 1
## 704 1
## 705 0
## 706 0
## 707 1
## 708 1
## 709 0
## 710 0
## 711 1
## 712 1
## 713 0
## 714 1
## 715 1
## 716 1
## 717 1
## 718 1
## 719 1
## 720 0
## 721 1
## 722 1
## 723 1
## 724 0
## 725 1
## 726 1
## 727 0
## 728 0
## 729 1
## 730 1
## 731 0
## 732 0
## 733 1
## 734 1
## 735 1
## 736 1
## 737 1
## 738 1
## 739 1
## 740 1
## 741 1
## 742 1
## 743 1
## 744 1
## 745 1
## 746 0
## 747 0
## 748 1
## 749 1
## 750 1
## 751 1
## 752 1
## 753 1
## 754 1
## 755 1
## 756 1
## 757 0
## 758 0
## 759 1
## 760 0
## 761 0
## 762 1
## 763 0
## 764 1
## 765 1
## 766 0
## 767 0
## 768 0
## 769 0
## 770 1
## 771 0
## 772 1
## 773 0
## 774 1
## 775 0
## 776 0
## 777 1
## 778 1
## 779 0
## 780 1
## 781 1
## 782 0
## 783 1
## 784 1
## 785 0
## 786 1
## 787 1
## 788 1
## 789 1
## 790 1
## 791 0
## 792 1
table(All)
## All
## 2 3 4 5
## 34 112 309 545
NB2 <- naiveBayes(x = train,y = train.labels.2)
NB3 <- naiveBayes(x = train,y = train.labels.3)
NB4 <- naiveBayes(x = train,y = train.labels.4)
NB5 <- naiveBayes(x = train,y = train.labels.5)
NB.Pred2 <- predict(NB2, test,type ="raw")
NB.Pred3 <- predict(NB3, test,type ="raw")
NB.Pred4 <- predict(NB4, test,type ="raw")
NB.Pred5 <- predict(NB5, test,type ="raw")
Voting.df <- data.frame(NB.Pred2, NB.Pred3,NB.Pred4,NB.Pred5)
colnames(Voting.df) <- c("Class 2: 0","Class2: 1","Class 3: 0","Class3: 1","Class 4: 0","Class4: 1","Class 5: 0","Class5: 1")
head(Voting.df)
## Class 2: 0 Class2: 1 Class 3: 0 Class3: 1 Class 4: 0 Class4: 1
## 1 1.0000000 4.681638e-14 0.1642978 8.357022e-01 0.00222148 9.977785e-01
## 2 1.0000000 2.106918e-14 0.9999999 1.388791e-07 0.99999005 9.948552e-06
## 3 1.0000000 1.988157e-16 0.9999957 4.261527e-06 0.99948388 5.161225e-04
## 4 1.0000000 2.292304e-11 0.9999999 1.432520e-07 0.99954769 4.523123e-04
## 5 0.9991637 8.362607e-04 0.8812187 1.187813e-01 0.91330439 8.669561e-02
## 6 1.0000000 1.552615e-11 0.9340747 6.592533e-02 0.99479980 5.200200e-03
## Class 5: 0 Class5: 1
## 1 1.0000000000 3.140330e-13
## 2 0.0001189609 9.998810e-01
## 3 0.0023075825 9.976924e-01
## 4 0.9911207947 8.879205e-03
## 5 0.9938771367 6.122863e-03
## 6 0.9583627093 4.163729e-02
Transformed.Voting.df <- Voting.df[seq(2,8,2)]
colnames(Transformed.Voting.df) <- c("2","3","4","5")
head(Transformed.Voting.df)
## 2 3 4 5
## 1 4.681638e-14 8.357022e-01 9.977785e-01 3.140330e-13
## 2 2.106918e-14 1.388791e-07 9.948552e-06 9.998810e-01
## 3 1.988157e-16 4.261527e-06 5.161225e-04 9.976924e-01
## 4 2.292304e-11 1.432520e-07 4.523123e-04 8.879205e-03
## 5 8.362607e-04 1.187813e-01 8.669561e-02 6.122863e-03
## 6 1.552615e-11 6.592533e-02 5.200200e-03 4.163729e-02
Evaluation <- Transformed.Voting.df
Index <- as.numeric(apply(Transformed.Voting.df,MARGIN = 1,which.max))
Index <- Index+1
Evaluation$Vote <- Index
Evaluation$Actual <- test.labels
head(Evaluation,100)
## 2 3 4 5 Vote Actual
## 1 4.681638e-14 8.357022e-01 9.977785e-01 3.140330e-13 4 4
## 2 2.106918e-14 1.388791e-07 9.948552e-06 9.998810e-01 5 5
## 3 1.988157e-16 4.261527e-06 5.161225e-04 9.976924e-01 5 5
## 4 2.292304e-11 1.432520e-07 4.523123e-04 8.879205e-03 5 4
## 5 8.362607e-04 1.187813e-01 8.669561e-02 6.122863e-03 3 4
## 6 1.552615e-11 6.592533e-02 5.200200e-03 4.163729e-02 3 4
## 7 2.131027e-13 1.764076e-12 8.220251e-04 3.025275e-07 4 5
## 8 3.766895e-12 5.623745e-01 9.985215e-01 1.333606e-12 4 3
## 9 1.094747e-15 1.879874e-09 1.383624e-01 8.558471e-01 5 5
## 10 1.200136e-09 9.646900e-01 2.876432e-06 3.720917e-06 3 3
## 11 1.334894e-17 4.858212e-06 7.701304e-01 1.506605e-01 4 4
## 12 1.766475e-08 2.050708e-03 8.984598e-01 9.734475e-03 4 3
## 13 3.013407e-13 2.861383e-03 1.076583e-03 9.736094e-01 5 5
## 14 1.454746e-06 4.484529e-01 6.820138e-01 9.870050e-07 4 4
## 15 3.942778e-06 8.661579e-01 1.670202e-01 5.736632e-04 3 4
## 16 4.305362e-19 2.482141e-08 1.360373e-01 2.825346e-02 4 5
## 17 2.849714e-13 4.817707e-04 9.013906e-03 1.432289e-01 5 4
## 18 1.581454e-10 5.459085e-07 1.016094e-01 9.757097e-01 5 5
## 19 1.341248e-08 4.256620e-01 6.872899e-01 2.940232e-04 4 4
## 20 1.697986e-09 7.997032e-04 2.481593e-01 4.842759e-01 5 2
## 21 2.473312e-15 1.763178e-03 9.839232e-01 4.839484e-08 4 4
## 22 1.246890e-23 2.837634e-04 7.640499e-01 1.764667e-01 4 4
## 23 9.122437e-04 9.996500e-01 8.472197e-01 8.368209e-13 3 3
## 24 1.555781e-18 2.999362e-06 8.709814e-02 9.990686e-01 5 5
## 25 2.088023e-10 2.938176e-01 2.375239e-01 1.896047e-02 3 4
## 26 6.485952e-11 1.037708e-02 1.522109e-01 4.207420e-01 5 5
## 27 3.984256e-11 2.012342e-07 2.158521e-01 8.990195e-01 5 4
## 28 1.974274e-08 1.142715e-04 1.347663e-03 9.183845e-01 5 5
## 29 4.279990e-02 3.178032e-02 1.578215e-01 8.082322e-09 4 3
## 30 1.502609e-06 8.758927e-01 1.589524e-01 1.648647e-16 3 3
## 31 4.492049e-13 4.714345e-06 1.331986e-03 9.993816e-01 5 5
## 32 8.283139e-13 6.612399e-04 9.500400e-05 9.948149e-01 5 5
## 33 2.573422e-16 7.216928e-05 9.780297e-01 5.762097e-01 4 5
## 34 6.886083e-12 9.688154e-01 6.375186e-01 2.573212e-06 3 3
## 35 5.073665e-11 9.268767e-01 2.040858e-01 1.303684e-03 3 4
## 36 4.852738e-14 9.445430e-01 5.461624e-01 7.500447e-03 3 4
## 37 9.407721e-07 2.231033e-05 9.992050e-01 3.218797e-10 4 5
## 38 9.999987e-01 9.888821e-01 6.036642e-01 9.329903e-10 2 3
## 39 2.114435e-16 2.100618e-06 2.508057e-04 9.992014e-01 5 5
## 40 2.126797e-09 2.048950e-02 9.983999e-01 4.438910e-09 4 3
## 41 3.450157e-14 2.021298e-06 4.804179e-04 9.999208e-01 5 5
## 42 1.446981e-16 9.464644e-01 9.199854e-01 2.471510e-05 3 4
## 43 2.091485e-10 7.688282e-14 8.109569e-01 4.655424e-06 4 5
## 44 1.939424e-09 4.847311e-04 9.132652e-01 1.208240e-02 4 3
## 45 6.857225e-10 3.064735e-02 9.802320e-01 1.218307e-02 4 5
## 46 5.359538e-06 1.176892e-02 8.785298e-01 9.493935e-03 4 4
## 47 5.265192e-11 9.466489e-05 9.453038e-01 3.275760e-01 4 5
## 48 8.372142e-10 5.084725e-01 1.093426e-01 1.291813e-01 3 3
## 49 6.360004e-13 4.044592e-06 7.861004e-03 9.999293e-01 5 5
## 50 9.784224e-08 3.750654e-05 5.023479e-03 9.494786e-01 5 5
## 51 1.081971e-13 2.481127e-05 1.021157e-02 9.998184e-01 5 4
## 52 1.192695e-10 1.262977e-05 9.954094e-01 2.608489e-02 4 5
## 53 3.392280e-12 1.901116e-03 9.325566e-03 9.865416e-01 5 4
## 54 3.651243e-13 3.860024e-06 9.564208e-01 4.347578e-01 4 4
## 55 2.125522e-11 3.182206e-02 1.589717e-01 6.845065e-01 5 4
## 56 7.658369e-13 4.798037e-06 4.727616e-04 9.999785e-01 5 5
## 57 2.103074e-11 3.932798e-05 2.179182e-02 9.995113e-01 5 2
## 58 8.885809e-14 3.298720e-07 1.350666e-02 9.998764e-01 5 5
## 59 3.335603e-14 8.631910e-06 7.889546e-03 9.999043e-01 5 4
## 60 1.520254e-10 4.932602e-01 9.394971e-01 4.374855e-03 4 4
## 61 5.809815e-11 5.740931e-05 1.936981e-02 9.993058e-01 5 5
## 62 5.311426e-12 5.334818e-04 7.444666e-04 9.991241e-01 5 5
## 63 3.822089e-08 1.886866e-02 6.628443e-01 4.768663e-01 4 4
## 64 1.189238e-14 5.943545e-06 3.712372e-01 9.942570e-01 5 5
## 65 2.484947e-15 8.730998e-07 2.552200e-03 9.999706e-01 5 5
## 66 1.358437e-13 5.690710e-09 1.888850e-03 9.999943e-01 5 5
## 67 2.740610e-08 2.599625e-05 8.332379e-02 9.302090e-01 5 3
## 68 3.373429e-09 3.442522e-02 1.484083e-01 8.083588e-01 5 3
## 69 1.626063e-12 7.845565e-05 1.725125e-01 9.717174e-01 5 4
## 70 4.827305e-17 6.136196e-07 2.267230e-01 9.858989e-01 5 4
## 71 1.746346e-12 1.009101e-06 7.245795e-03 9.999272e-01 5 5
## 72 2.377473e-14 5.230791e-07 3.388618e-01 9.937997e-01 5 5
## 73 6.074262e-08 5.463495e-03 2.044941e-01 7.274661e-01 5 2
## 74 1.299787e-07 4.537355e-03 1.281373e-01 7.983273e-01 5 4
## 75 7.819261e-13 5.749192e-06 4.862032e-01 9.866838e-01 5 4
## 76 2.602698e-14 5.485119e-06 6.369956e-01 3.443817e-01 4 5
## 77 2.112658e-14 1.575228e-06 1.374151e-02 2.083542e-03 4 3
## 78 1.191138e-16 2.068812e-04 6.137568e-01 5.107603e-01 4 4
## 79 2.659123e-20 8.892096e-01 9.654198e-01 3.202421e-09 4 5
## 80 1.582601e-13 3.164933e-09 1.307821e-03 9.999870e-01 5 5
## 81 3.647100e-17 4.800097e-07 1.288152e-01 9.834594e-01 5 5
## 82 2.644532e-17 1.012112e-05 6.351110e-02 9.991626e-01 5 4
## 83 3.888489e-18 1.360730e-09 1.059236e-01 1.891266e-07 4 5
## 84 7.955353e-12 1.374444e-05 1.484232e-03 9.952110e-01 5 5
## 85 7.070890e-14 1.783744e-03 3.103819e-01 4.752757e-01 5 5
## 86 7.521320e-15 1.220565e-04 2.349044e-02 4.477208e-06 4 3
## 87 5.835437e-01 3.446675e-03 8.550242e-01 2.662451e-09 4 4
## 88 1.140102e-12 1.838280e-04 3.600268e-03 1.468946e-02 5 5
## 89 6.553860e-21 7.214720e-07 2.296139e-02 9.996505e-01 5 5
## 90 5.386032e-12 4.248122e-05 2.116565e-01 2.911687e-02 4 3
## 91 1.196239e-13 1.102389e-01 3.739355e-01 5.809481e-01 5 3
## 92 1.079870e-14 4.513949e-02 3.087539e-01 6.800677e-02 4 5
## 93 2.598400e-18 2.281177e-03 9.961089e-01 1.844758e-04 4 4
## 94 2.219248e-14 1.216840e-12 1.544977e-03 5.197920e-04 4 5
## 95 4.909426e-10 3.240547e-04 3.953398e-04 9.515759e-01 5 5
## 96 1.433203e-22 8.317325e-07 4.041837e-01 9.920590e-01 5 5
## 97 7.363209e-18 1.746500e-05 2.724720e-02 9.976688e-01 5 5
## 98 5.281205e-13 5.184803e-05 1.979216e-03 9.905448e-01 5 5
## 99 2.454953e-02 9.369386e-03 1.773149e-03 5.397619e-02 5 2
## 100 2.021557e-12 4.127947e-02 5.935884e-01 1.695911e-01 4 5
CM <- table(Evaluation$Actual,Evaluation$Vote)
CM
##
## 2 3 4 5
## 2 0 0 2 5
## 3 1 7 10 7
## 4 0 9 26 27
## 5 0 2 21 91
#Proportions
Overall <- length(Evaluation$Actual)
Length2 <- length(which(Evaluation$Actual==2))
Length3 <- length(which(Evaluation$Actual==3))
Length4 <- length(which(Evaluation$Actual==4))
Length5 <- length(which(Evaluation$Actual==5))
#Accuracy
Accuracy <- sum(diag(CM))/sum(CM)
#Precision
Precision <- diag(CM)/rowSums(CM)
Precision <- (Precision[1]*Length2+Precision[2]*Length3+Precision[3]*Length4+Precision[4]*Length5)/208
#Recall
Recall <- diag(CM)/colSums(CM)
Recall <- (Recall[1]*Length2+Recall[2]*Length3+Recall[3]*Length4+Recall[4]*Length5)/208
Accuracy
## [1] 0.5961538
Precision
## 2
## 0.5961538
Recall
## 2
## 0.5617512