setwd("~/Google Drive/UM/Smart Services/Thesis/Thesis/Code/SVM/2.Feature Set 1/TFIDF/10")
#install.packages("naivebayes")
library(naivebayes)
## Warning: package 'naivebayes' was built under R version 3.4.3
library(dplyr)
## Warning: Installed Rcpp (0.12.16) different from Rcpp used to build dplyr (0.12.11).
## Please reinstall dplyr to avoid random crashes or undefined behavior.
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(psych)
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
library(e1071)
library(readxl)
Import actual Labels.
#Import Labels
Labels <- read_excel("~/Google Drive/UM/Smart Services/Thesis/Thesis/Code/Naive Bayes/1.Labels/Source Data.xlsx")
Label <- Labels$Score
Import TFIDF feature set with a 10th percentile cut-off.
#Import Features
Features <- read.csv("~/Google Drive/UM/Smart Services/Thesis/Thesis/Code/SVM/2.Feature Set 1/TFIDF/10/Feature Set 1 10th TFIDF.csv")
Features <- Features[-1]
#Class 2
Label2 <- list()
for(i in 1:1000){
if(Label[i]==3| Label[i]==4){
Label2[i] <- 1
}else{
Label2[i] <- 0
}
}
#As Factor
Label2 <- as.factor(unlist(Label2))
#Class 3
Label3 <- list()
for(i in 1:1000){
if(Label[i]==5| Label[i]==6){
Label3[i] <- 1
}else{
Label3[i] <- 0
}
}
#As Factor
Label3 <- as.factor(unlist(Label3))
#Class 4
Label4 <- list()
for(i in 1:1000){
if(Label[i]==7| Label[i]==8){
Label4[i] <- 1
}else{
Label4[i] <- 0
}
}
#As Factor
Label4 <- as.factor(unlist(Label4))
#Class 5
Label5 <- list()
for(i in 1:1000){
if(Label[i]==9| Label[i]==10){
Label5[i] <- 1
}else{
Label5[i] <- 0
}
}
#As Factor
Label5 <- as.factor(unlist(Label5))
#All Labels
All <- list()
for(i in 1:1000){
if(Label[i]==9| Label[i]==10){
All[i] <- 5
}else if(Label[i]==7| Label[i]==8){
All[i] <- 4
}else if(Label[i]==5| Label[i]==6){
All[i] <- 3
}else{
All[i] <- 2
}
}
#As Factor
All <- as.factor(unlist(All))
#Transform Integer to Factor
for(i in 1:2396){
Features[,i] <- as.numeric(Features[,i])
}
str(Features)
## 'data.frame': 1000 obs. of 2396 variables:
## $ abit : num 0 0 0 0 0 0 0 0 0 0 ...
## $ abl : num 0.0351 0 0 0 0 ...
## $ about : num 0 0 0 0 0 0 0 0 0 0 ...
## $ abov : num 0 0 0 0 0 0 0 0 0 0 ...
## $ absolut : num 0 0 0 0 0 0 0 0 0 0 ...
## $ accent : num 0 0 0 0 0 0 0 0 0 0 ...
## $ accept : num 0 0 0 0 0 0 0 0 0 0 ...
## $ access : num 0 0 0 0 0 0 0 0 0 0 ...
## $ accid : num 0 0 0 0 0 0 0 0 0 0 ...
## $ accommod : num 0 0 0 0 0 0 0 0 0 0 ...
## $ accomplish : num 0 0 0 0 0 0 0 0 0 0 ...
## $ accur : num 0 0 0 0 0 0 0 0 0 0 ...
## $ acess : num 0 0 0 0 0 0 0 0 0 0 ...
## $ ach : num 0 0 0 0 0 0 0 0 0 0 ...
## $ acknowledg : num 0 0 0 0 0 0 0 0 0 0 ...
## $ acomod : num 0 0 0 0 0 0 0 0 0 0 ...
## $ across : num 0 0 0 0 0 0 0 0 0 0 ...
## $ activ : num 0 0 0 0 0 0 0 0 0 0 ...
## $ actual : num 0 0 0 0 0 ...
## $ adaptor : num 0 0 0 0 0 0 0 0 0 0 ...
## $ add : num 0 0 0 0 0 0 0 0 0 0 ...
## $ addit : num 0 0 0 0 0 0 0 0 0 0 ...
## $ adequ : num 0 0 0 0 0 0 0 0 0 0 ...
## $ adjac : num 0 0 0 0 0 0 0 0 0 0 ...
## $ adjust : num 0 0 0 0 0 0 0 0 0 0 ...
## $ ador : num 0 0 0 0 0 0 0 0 0 0 ...
## $ adult : num 0 0 0 0 0 0 0 0 0 0 ...
## $ advanc : num 0 0 0 0 0 0 0 0 0 0 ...
## $ advantag : num 0 0 0 0 0 0 0 0 0 0 ...
## $ adverti : num 0 0 0 0 0.105 ...
## $ advi : num 0 0 0 0 0 0 0 0 0 0 ...
## $ advic : num 0 0 0 0 0 0 0 0 0 0 ...
## $ affect : num 0 0 0 0 0 0 0 0 0 0 ...
## $ afford : num 0 0 0 0 0 0 0 0 0 0 ...
## $ afraid : num 0 0 0 0.0753 0 ...
## $ africa : num 0 0 0 0 0 0 0 0 0 0 ...
## $ after : num 0 0 0 0 0.112 ...
## $ afternoon : num 0 0 0 0 0 0 0 0 0 0 ...
## $ afterward : num 0 0 0 0 0 0 0 0 0 0 ...
## $ age : num 0 0 0 0 0 0 0 0 0 0 ...
## $ ago : num 0 0 0 0 0 0 0 0 0 0 ...
## $ agr : num 0 0 0 0 0 0 0 0 0 0 ...
## $ agreeabl : num 0 0 0 0 0 0 0 0 0 0 ...
## $ ahead : num 0 0 0 0 0 0 0 0 0 0 ...
## $ air : num 0 0 0 0 0 0 0 0 0 0 ...
## $ aircon : num 0 0 0 0 0 0 0 0 0 0 ...
## $ aircondit : num 0 0 0 0 0 ...
## $ airi : num 0 0 0 0 0 0 0 0 0 0 ...
## $ airless : num 0 0 0 0 0 0 0 0 0 0 ...
## $ airport : num 0 0 0 0 0 0 0 0 0 0 ...
## $ alarm : num 0 0 0 0 0 0 0 0 0 0 ...
## $ albeit : num 0 0 0 0 0 0 0 0 0 0 ...
## $ albert : num 0 0 0 0 0 0 0 0 0 0 ...
## $ albrt : num 0 0 0 0 0 0 0 0 0 0 ...
## $ alcohol : num 0 0 0 0 0 0 0 0 0 0 ...
## $ aldo : num 0 0 0 0 0 0 0 0 0 0 ...
## $ alittl : num 0 0 0 0 0 0 0 0 0 0 ...
## $ all : num 0 0 0 0 0 0 0 0 0 0 ...
## $ allevi : num 0 0 0 0 0 0 0 0 0 0 ...
## $ alloc : num 0 0 0 0 0 0 0 0 0 0 ...
## $ allow : num 0 0 0 0 0 0 0 0 0 0 ...
## $ almost : num 0 0 0 0 0 0 0 0 0 0 ...
## $ along : num 0 0 0 0 0 0 0 0 0 0 ...
## $ alot : num 0 0 0 0 0 0 0 0 0 0 ...
## $ alreadi : num 0 0 0 0.062 0 ...
## $ alright : num 0 0 0 0 0 0 0 0 0 0 ...
## $ also : num 0 0 0 0.0933 0 ...
## $ altern : num 0 0 0 0 0 0 0 0 0 0 ...
## $ although : num 0 0 0 0 0 0 0 0 0 0 ...
## $ alway : num 0 0 0 0 0 0 0 0 0 0 ...
## $ amaz : num 0 0 0 0 0.0653 ...
## $ ambianc : num 0 0 0 0 0 0 0 0 0 0 ...
## $ ambienc : num 0 0 0 0 0 0 0 0 0 0 ...
## $ amen : num 0 0.107 0 0 0 ...
## $ amend : num 0 0 0 0 0 0 0 0 0 0 ...
## $ american : num 0 0 0 0 0 0 0 0 0 0 ...
## $ amount : num 0 0 0 0 0 0 0 0 0 0 ...
## $ amsterdam : num 0 0.0847 0 0.0463 0 ...
## $ and : num 0.031 0 0 0 0 ...
## $ angl : num 0 0 0 0 0 0 0 0 0 0 ...
## $ ann : num 0 0 0 0 0 0 0 0 0 0 ...
## $ anna : num 0 0 0 0 0 0 0 0 0 0 ...
## $ annex : num 0 0 0 0 0 0 0 0 0 0 ...
## $ announc : num 0 0 0 0 0 0 0 0 0 0 ...
## $ annoy : num 0.0357 0 0 0 0 ...
## $ anoth : num 0 0 0 0 0 0 0 0 0 0 ...
## $ ansterdam : num 0 0 0 0 0 0 0 0 0 0 ...
## $ answer : num 0 0 0 0 0 0 0 0 0 0 ...
## $ ant : num 0 0 0 0 0 0 0 0 0 0 ...
## $ anymor : num 0 0 0 0 0 0 0 0 0 0 ...
## $ anyon : num 0 0.102 0 0 0 ...
## $ anyth : num 0 0 0 0 0 0 0 0 0 0 ...
## $ anyway : num 0 0 0 0 0 0 0 0 0 0 ...
## $ anywh : num 0 0 0 0 0 0 0 0 0 0 ...
## $ apart : num 0 0 0 0 0 ...
## $ apex : num 0 0 0 0 0 0 0 0 0 0 ...
## $ apolog : num 0 0 0 0 0 0 0 0 0 0 ...
## $ appal : num 0 0 0 0 0 0 0 0 0 0 ...
## $ appar : num 0 0 0 0 0 0 0 0 0 0 ...
## [list output truncated]
#Features
set.seed(1234)
ind <- sample(2,nrow(Features),replace = T, prob =c(0.8,0.2))
train <- Features[ind == 1,]
test <- Features[ind ==2,]
train.labels.2 <- Label2[ind == 1]
test.labels.2 <- Label2[ind ==2]
train.labels.3 <- Label3[ind == 1]
test.labels.3 <- Label3[ind ==2]
train.labels.4 <- Label4[ind == 1]
test.labels.4 <- Label4[ind ==2]
train.labels.5 <- Label5[ind == 1]
test.labels.5 <- Label5[ind ==2]
train.labels <- All[ind == 1]
test.labels <- All[ind ==2]
#SVM2
train2 <- train
train2$Score <- train.labels.2
SVM2 <- svm(Score~.,data = train2,scale = FALSE,probability=TRUE)
train3 <- train
train3$Score <- train.labels.3
SVM3 <- svm(Score~.,data = train3,scale = FALSE,probability=TRUE)
train4 <- train
train4$Score <- train.labels.4
SVM4 <- svm(Score~.,data = train4,scale = FALSE,probability=TRUE)
train5 <- train
train5$Score <- train.labels.5
SVM5 <- svm(Score~.,data = train5,scale = FALSE,probability=TRUE)
P2 <- predict(SVM2,newdata = test,probability = TRUE)
P3 <- predict(SVM3,newdata = test,probability = TRUE)
P4 <- predict(SVM4,newdata = test,probability = TRUE)
P5 <- predict(SVM5,newdata = test,probability = TRUE)
Prob2 <- attr(P2,"probabilities")
Prob3 <- attr(P3,"probabilities")
Prob4 <- attr(P4,"probabilities")
Prob5 <- attr(P5,"probabilities")
Probabilities used as an input for voting procedure. The class with the highest probability is chosen.
Voting.df <- data.frame(Prob2, Prob3,Prob4,Prob5)
colnames(Voting.df) <- c("Class 2: 1","Class2: 0","Class 3: 0","Class3: 1","Class 4: 0","Class4: 1","Class 5: 0","Class5: 1")
head(Voting.df)
## Class 2: 1 Class2: 0 Class 3: 0 Class3: 1 Class 4: 0 Class4: 1
## 5 0.03818164 0.9618184 0.8445282 0.15547176 0.7021886 0.2978114
## 14 0.02100280 0.9789972 0.9197674 0.08023261 0.6640827 0.3359173
## 16 0.01537635 0.9846237 0.9338277 0.06617229 0.7490503 0.2509497
## 26 0.03786958 0.9621304 0.9052764 0.09472360 0.7222275 0.2777725
## 28 0.03757358 0.9624264 0.7261978 0.27380224 0.7386476 0.2613524
## 29 0.02258985 0.9774101 0.8794324 0.12056755 0.6987523 0.3012477
## Class 5: 0 Class5: 1
## 5 0.7101294 0.2898706
## 14 0.5587509 0.4412491
## 16 0.3921667 0.6078333
## 26 0.5494612 0.4505388
## 28 0.6831995 0.3168005
## 29 0.6243519 0.3756481
SEQ <- c(1,4,6,8)
Transformed.Voting.df <- Voting.df[SEQ]
colnames(Transformed.Voting.df) <- c("2","3","4","5")
head(Transformed.Voting.df)
## 2 3 4 5
## 5 0.03818164 0.15547176 0.2978114 0.2898706
## 14 0.02100280 0.08023261 0.3359173 0.4412491
## 16 0.01537635 0.06617229 0.2509497 0.6078333
## 26 0.03786958 0.09472360 0.2777725 0.4505388
## 28 0.03757358 0.27380224 0.2613524 0.3168005
## 29 0.02258985 0.12056755 0.3012477 0.3756481
Evaluation <- Transformed.Voting.df
Index <- as.numeric(apply(Transformed.Voting.df,MARGIN = 1,which.max))
Index <- Index+1
Evaluation$Vote <- Index
Evaluation$Actual <- test.labels
head(Evaluation,100)
## 2 3 4 5 Vote Actual
## 5 0.038181639 0.15547176 0.2978114 0.2898706043 4 4
## 14 0.021002798 0.08023261 0.3359173 0.4412491293 5 5
## 16 0.015376345 0.06617229 0.2509497 0.6078333058 5 5
## 26 0.037869579 0.09472360 0.2777725 0.4505388267 5 4
## 28 0.037573580 0.27380224 0.2613524 0.3168005403 5 4
## 29 0.022589850 0.12056755 0.3012477 0.3756481325 5 4
## 39 0.030592838 0.08578453 0.2912015 0.5000000000 5 5
## 40 0.022718256 0.14801904 0.3590708 0.3162584448 4 3
## 60 0.021584213 0.10037105 0.2627470 0.5810768187 5 5
## 61 0.037346816 0.19031195 0.2956103 0.3686840196 5 3
## 72 0.016285025 0.04664604 0.2830236 0.5495992051 5 4
## 81 0.028686378 0.11588716 0.3421449 0.3748018829 5 3
## 86 0.035310003 0.12081539 0.3003863 0.4906887587 5 5
## 90 0.078577184 0.12554426 0.3098202 0.2126480606 4 4
## 92 0.028450195 0.15628750 0.3098685 0.2531634626 4 4
## 113 0.028079048 0.06466468 0.3424152 0.3718152615 5 5
## 116 0.043449758 0.19987941 0.2653301 0.3589459628 5 4
## 117 0.036180765 0.06489630 0.3839651 0.4476680001 5 5
## 122 0.047840831 0.10759261 0.3650936 0.1218210265 4 4
## 123 0.026338348 0.06340522 0.4188837 0.3402201879 4 2
## 124 0.023658222 0.10617956 0.3235465 0.3539933045 5 4
## 131 0.030976519 0.11635976 0.3210432 0.4094035596 5 4
## 135 0.039554055 0.13881523 0.3225515 0.2709346845 4 3
## 137 0.016810254 0.07230888 0.3035049 0.5818155076 5 5
## 140 0.047957859 0.12468294 0.3293954 0.3082099114 4 4
## 142 0.022866624 0.06239578 0.3429161 0.4486701816 5 5
## 149 0.038086860 0.07878263 0.3560355 0.4568854504 5 4
## 154 0.024955117 0.09565987 0.2388775 0.6187062782 5 5
## 156 0.045862279 0.08846731 0.3523094 0.3187385411 4 3
## 158 0.038118416 0.15811149 0.2855218 0.3452013961 5 3
## 169 0.025297698 0.05256913 0.2020893 0.7597796071 5 5
## 185 0.018420384 0.09643769 0.2694042 0.5384865791 5 5
## 187 0.016937782 0.10465724 0.3384917 0.4614470292 5 5
## 192 0.025561003 0.19243354 0.3318065 0.2666732811 4 3
## 194 0.183914654 0.66302172 0.2566762 0.1337540839 3 4
## 195 0.028642216 0.27268901 0.2862556 0.2325611879 4 4
## 196 0.047494316 0.11530312 0.3196075 0.3015560750 4 5
## 197 0.083686392 0.16828669 0.2540324 0.2350210628 4 3
## 199 0.019355150 0.06193176 0.2485947 0.7407440246 5 5
## 210 0.079609492 0.13935989 0.3278457 0.1669280418 4 3
## 216 0.038575151 0.07215352 0.1802531 0.7910278874 5 5
## 220 0.023421024 0.15750785 0.2718751 0.3719463302 5 4
## 227 0.041515876 0.06998549 0.2935571 0.4779714145 5 5
## 234 0.029683551 0.12380251 0.3483891 0.2976597973 4 3
## 240 0.029256972 0.06335722 0.5558158 0.1589525729 4 5
## 245 0.126979135 0.18737727 0.4262045 0.1669676038 4 4
## 249 0.028224759 0.11468586 0.3590326 0.3328329539 4 5
## 261 0.046702710 0.34236268 0.4000962 0.1928046873 4 3
## 277 0.018655848 0.03811587 0.2038610 0.8894263617 5 5
## 283 0.027473975 0.10502194 0.2748507 0.5091833088 5 5
## 290 0.008801241 0.01841556 0.1429213 0.9717877578 5 4
## 293 0.030828246 0.05560175 0.3831336 0.2792487262 4 5
## 302 0.018592285 0.18142852 0.2400851 0.4707115884 5 4
## 305 0.033248137 0.10901835 0.3880683 0.3121311613 4 4
## 308 0.015468679 0.09588874 0.3044043 0.1705840908 4 4
## 311 0.023644429 0.04727674 0.2573469 0.7410263225 5 5
## 320 0.018302995 0.03891481 0.1938830 0.9543266859 5 2
## 322 0.021873774 0.04423799 0.2320681 0.8206593118 5 5
## 330 0.009278512 0.04478738 0.1604451 0.7987634514 5 4
## 332 0.046892986 0.10013246 0.8406066 0.0300076477 4 4
## 333 0.021909013 0.02147178 0.3333679 0.8198486945 5 5
## 339 0.013315538 0.08892196 0.2214835 0.5727948564 5 5
## 341 0.038216983 0.07712122 0.4734935 0.1290986031 4 4
## 344 0.026875715 0.06202343 0.3294884 0.6529550570 5 5
## 349 0.021016254 0.04988112 0.1989856 0.9028061350 5 5
## 355 0.018285762 0.01332988 0.1626699 0.9717529770 5 5
## 356 0.053355157 0.10247983 0.3128616 0.3913178502 5 3
## 365 0.054011188 0.19906758 0.3378470 0.2181146196 4 3
## 366 0.045034492 0.10026741 0.2483308 0.5509598332 5 4
## 369 0.015739227 0.04076636 0.3353147 0.4789342605 5 4
## 371 0.017218976 0.07516175 0.2713630 0.8346406705 5 5
## 373 0.023295599 0.04465106 0.3500923 0.5687523356 5 5
## 389 0.361942664 0.09013756 0.8615288 0.0002280336 4 2
## 390 0.231439468 0.52479573 0.7573463 0.0001786078 4 4
## 396 0.019471918 0.04058484 0.2861237 0.6377289064 5 4
## 412 0.013315830 0.06796631 0.3506868 0.4904207841 5 5
## 413 0.028943176 0.10295357 0.2884834 0.4515013939 5 3
## 415 0.017119366 0.08247124 0.3929728 0.4460533436 5 4
## 422 0.023115135 0.13245157 0.2702334 0.3946163337 5 5
## 425 0.013637127 0.05456433 0.2836367 0.6359376191 5 5
## 434 0.041346739 0.08148757 0.3067403 0.3873253559 5 5
## 438 0.015091452 0.07856271 0.2871240 0.6849597820 5 4
## 441 0.037882644 0.10092857 0.3026317 0.4215633154 5 5
## 442 0.022724647 0.09515182 0.2195513 0.6422249499 5 5
## 445 0.027157425 0.09478386 0.3366993 0.3943161999 5 5
## 447 0.034689807 0.08931374 0.2818816 0.3747871404 5 3
## 453 0.074608643 0.25745808 0.3287340 0.2225987667 4 4
## 454 0.020599107 0.11123314 0.2778320 0.4540698942 5 5
## 462 0.012408731 0.04805849 0.2475114 0.7473467295 5 5
## 474 0.066166317 0.13238458 0.3003370 0.4036945023 5 3
## 476 0.015844746 0.11457258 0.2592295 0.4629135428 5 3
## 493 0.014972706 0.06105938 0.5054259 0.2273277347 4 5
## 502 0.019785371 0.11419798 0.4154750 0.3193647199 4 4
## 503 0.026248770 0.09176566 0.2636241 0.5204691506 5 5
## 506 0.018909295 0.15469834 0.2603761 0.4440069919 5 5
## 508 0.019438074 0.05825576 0.3576710 0.5678299111 5 5
## 512 0.028144990 0.12464845 0.3223665 0.4817929111 5 5
## 513 0.023266827 0.12454233 0.2960895 0.4780164914 5 5
## 521 0.089271103 0.12567625 0.2596351 0.3621024013 5 2
## 524 0.081589939 0.10234623 0.3810107 0.1933533250 4 5
CM <- table(Evaluation$Actual,Evaluation$Vote)
CM
##
## 3 4 5
## 2 0 4 3
## 3 0 14 11
## 4 1 29 32
## 5 1 13 100
#Proportions
Overall <- length(Evaluation$Actual)
Length2 <- length(which(Evaluation$Actual==2))
Length3 <- length(which(Evaluation$Actual==3))
Length4 <- length(which(Evaluation$Actual==4))
Length5 <- length(which(Evaluation$Actual==5))
#Accuracy
Accuracy <- sum(0,29,100)/sum(CM)
#Precision
Rows <- rowSums(CM)
Precision2 <- CM[2,1]/Rows[2]
Precision3 <- CM[3,2]/Rows[3]
Precision4 <- CM[4,3]/Rows[4]
Precision <- (Precision2*Length3+Precision3*Length4+Precision4*Length5)/208
#Recall
Col <- colSums(CM)
Recall2 <- CM[2,1]/Col[1]
Recall3 <- CM[3,2]/Col[2]
Recall4 <- CM[4,3]/Col[3]
Recall <- (Recall2*Length3+Recall3*Length4+Recall4*Length5)/208
Accuracy
## [1] 0.6201923
Precision
## 3
## 0.6201923
Recall
## 3
## 0.5194657