setwd("~/Dropbox/Research/Adrian")
i<-read.csv ("AI_conservatism_intervention_study_v2.csv", header=T, sep=",")

#creating time 1 and time 2 DVs, plus their "difference scores"
i$easy1<-(i$easy_1 + i$predictable_1 + i$understand_1)/3

i$easy2<-(i$easy2_1 + i$predictable2_1 + i$understand2_1)/3

i$easydiff<-(i$easy2 - i$easy1)

i$help1<-(i$feeling_1 + i$needs_1 + i$comfort_1 + i$bestint_1 + i$lookout_1)/5

i$help2<-(i$feeling2_1 + i$anticipate2_1 + i$comfort2_1 + i$interests2_1 + i$lookout2_1)/5

i$helpdiff<-(i$help2 - i$help1)

i$risk1<- (i$risk_1 + i$safety.risk_1 + i$job.risk_1)/3

i$risk2<- (i$Q83_1 + i$Q84_1 + i$Q85_1)/3

i$riskdiff<- (i$risk2 - i$risk1)

i$trust1<-(i$trust_1 + i$hospital_1)/2

i$trust2<- (i$Q86_1 + i$Q87_1)/2

i$trustdiff<-(i$trust2 - i$trust1)


#creating condition variable 
i$cond[i$risk==1]<-"risk"
i$cond[i$downwards==1]<-"down"
i$cond[i$upwards==1]<-"up"
i$cond[i$explain==1]<-"explain"

i$edu<-as.factor(i$edu)
i$inc<-as.factor(i$inc)

#no interaction for the "difference scores" (t2 measures - t1 measures)
summary(aov(trustdiff~cond * poli_1 + age + gender + inc + edu, i))
##              Df Sum Sq Mean Sq F value Pr(>F)
## cond          3    742   247.4   1.586  0.192
## poli_1        1     18    18.3   0.117  0.732
## age           1     26    26.0   0.167  0.683
## gender        1    376   375.6   2.407  0.122
## inc           6    990   165.1   1.058  0.387
## edu           5   1361   272.1   1.744  0.124
## cond:poli_1   3    637   212.4   1.361  0.254
## Residuals   380  59293   156.0
summary(aov(riskdiff~cond * poli_1 + age + gender + inc + edu, i))
##              Df Sum Sq Mean Sq F value Pr(>F)
## cond          3    527  175.60   1.214  0.304
## poli_1        1     46   45.62   0.316  0.575
## age           1     20   19.89   0.138  0.711
## gender        1     25   24.82   0.172  0.679
## inc           6    664  110.62   0.765  0.598
## edu           5    926  185.21   1.281  0.271
## cond:poli_1   3    509  169.72   1.174  0.320
## Residuals   380  54951  144.61
#interaction for just the t2 measure, but only significant for trust DV (not risk DV)
summary(aov(trust2~cond * poli_1 + age + gender + inc + edu, i))
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## cond          3    350     117   0.202   0.8949    
## poli_1        1  14562   14562  25.260 7.73e-07 ***
## age           1      4       4   0.007   0.9356    
## gender        1   9761    9761  16.932 4.75e-05 ***
## inc           6   1247     208   0.360   0.9036    
## edu           5   2198     440   0.762   0.5773    
## cond:poli_1   3   4140    1380   2.394   0.0681 .  
## Residuals   380 219066     576                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(risk2~cond * poli_1 + age + gender + inc + edu, i))
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## cond          3   1697   565.8   1.122 0.339998    
## poli_1        1   1002  1002.1   1.987 0.159478    
## age           1      1     1.2   0.002 0.960934    
## gender        1    489   489.0   0.970 0.325425    
## inc           6   3760   626.6   1.242 0.283632    
## edu           5  10917  2183.5   4.330 0.000763 ***
## cond:poli_1   3   1865   621.8   1.233 0.297460    
## Residuals   380 191642   504.3                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#breaking down the interaction between risk cond and conservatism 

summary(lm(trust1 ~ poli_1, i))
## 
## Call:
## lm(formula = trust1 ~ poli_1, data = i)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -68.658 -14.175   3.661  18.325  51.169 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 48.83129    2.89028  16.895  < 2e-16 ***
## poli_1       0.19826    0.04214   4.705 3.51e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 24.74 on 399 degrees of freedom
## Multiple R-squared:  0.05256,    Adjusted R-squared:  0.05019 
## F-statistic: 22.13 on 1 and 399 DF,  p-value: 3.509e-06
down<-subset(i, cond=="down")
up<-subset(i, cond=="up")
explain<-subset(i, cond=="explain")
risk<-subset(i, cond=="risk")

summary(lm(trust2 ~ poli_1, down))
## 
## Call:
## lm(formula = trust2 ~ poli_1, data = down)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -62.594 -12.165   3.118  19.653  41.588 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 54.48270    5.76562   9.450 2.07e-15 ***
## poli_1       0.17865    0.08794   2.032   0.0449 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25.7 on 97 degrees of freedom
## Multiple R-squared:  0.04081,    Adjusted R-squared:  0.03093 
## F-statistic: 4.127 on 1 and 97 DF,  p-value: 0.04493
#only condition with no effect of conservatism on trust is the "upwards" condition (parallels last study's findings - this is the emotion condition)
summary(lm(trust2 ~ poli_1, up)) ###
## 
## Call:
## lm(formula = trust2 ~ poli_1, data = up)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -62.55 -14.48   2.92  17.45  41.46 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 58.54381    5.59762  10.459   <2e-16 ***
## poli_1       0.09806    0.07913   1.239    0.218    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.15 on 100 degrees of freedom
## Multiple R-squared:  0.01513,    Adjusted R-squared:  0.005277 
## F-statistic: 1.536 on 1 and 100 DF,  p-value: 0.2181
summary(lm(trust2 ~ poli_1, risk))
## 
## Call:
## lm(formula = trust2 ~ poli_1, data = risk)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -81.46 -11.12   6.35  15.15  57.60 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 42.39557    6.02412   7.038 2.79e-10 ***
## poli_1       0.39068    0.08635   4.524 1.72e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 24.83 on 97 degrees of freedom
## Multiple R-squared:  0.1743, Adjusted R-squared:  0.1658 
## F-statistic: 20.47 on 1 and 97 DF,  p-value: 1.717e-05
summary(lm(trust2 ~ poli_1, explain))
## 
## Call:
## lm(formula = trust2 ~ poli_1, data = explain)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -66.232 -13.456   1.889  15.778  44.295 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 55.70514    5.38037  10.353   <2e-16 ***
## poli_1       0.16502    0.07901   2.089   0.0393 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.54 on 99 degrees of freedom
## Multiple R-squared:  0.04221,    Adjusted R-squared:  0.03253 
## F-statistic: 4.363 on 1 and 99 DF,  p-value: 0.0393

mediators

names(i)
##  [1] "V1"                "V2"                "V3"               
##  [4] "V4"                "V5"                "V6"               
##  [7] "V7"                "V8"                "V9"               
## [10] "V10"               "Q26"               "Q34"              
## [13] "Q63_1"             "Q63_2"             "Q63_3"            
## [16] "Q63_4"             "control"           "easy_1"           
## [19] "predictable_1"     "understand_1"      "useful_1"         
## [22] "feeling_1"         "needs_1"           "comfort_1"        
## [25] "bestint_1"         "lookout_1"         "risk_1"           
## [28] "safety.risk_1"     "job.risk_1"        "trust_1"          
## [31] "hospital_1"        "Q69_1"             "Q69_2"            
## [34] "Q69_3"             "Q69_4"             "risk"             
## [37] "Q66_1"             "Q66_2"             "Q66_3"            
## [40] "Q66_4"             "downwards"         "Q65_1"            
## [43] "Q65_2"             "Q65_3"             "Q65_4"            
## [46] "explain"           "Q64_1"             "Q64_2"            
## [49] "Q64_3"             "Q64_4"             "upwards"          
## [52] "easy2_1"           "predictable2_1"    "understand2_1"    
## [55] "useful2_1"         "attn100_1"         "feeling2_1"       
## [58] "anticipate2_1"     "comfort2_1"        "interests2_1"     
## [61] "lookout2_1"        "Q83_1"             "Q84_1"            
## [64] "Q85_1"             "Q86_1"             "Q87_1"            
## [67] "age"               "gender"            "inc"              
## [70] "edu"               "poli_1"            "poli_2"           
## [73] "poli_3"            "LocationLatitude"  "LocationLongitude"
## [76] "LocationAccuracy"  "easy1"             "easy2"            
## [79] "easydiff"          "help1"             "help2"            
## [82] "helpdiff"          "risk1"             "risk2"            
## [85] "riskdiff"          "trust1"            "trust2"           
## [88] "trustdiff"         "cond"
summary(aov(easy2~cond * poli_1 + age + gender + inc + edu, i))
##              Df Sum Sq Mean Sq F value Pr(>F)  
## cond          3   2502   834.0   1.615 0.1853  
## poli_1        1   2191  2191.1   4.244 0.0401 *
## age           1      1     1.1   0.002 0.9632  
## gender        1      0     0.0   0.000 0.9925  
## inc           6   2128   354.7   0.687 0.6603  
## edu           5   6215  1243.0   2.407 0.0362 *
## cond:poli_1   3   3149  1049.7   2.033 0.1088  
## Residuals   380 196202   516.3                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(help2~cond * poli_1 + age + gender + inc + edu, i))
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## cond          3   3170    1057   1.566 0.197141    
## poli_1        1   8014    8014  11.877 0.000632 ***
## age           1      9       9   0.014 0.906120    
## gender        1   8080    8080  11.974 0.000601 ***
## inc           6   4242     707   1.048 0.393842    
## edu           5   6684    1337   1.981 0.080579 .  
## cond:poli_1   3   1046     349   0.517 0.671122    
## Residuals   380 256403     675                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1