Sys.setlocale("LC_ALL","C")
[1] "C"
packages = c(
"dplyr","ggplot2","d3heatmap","googleVis","devtools","plotly", "xgboost",
"magrittr","caTools","ROCR","corrplot", "rpart", "rpart.plot",
"doParallel", "caret", "glmnet", "Matrix", "e1071", "randomForest",
"flexclust", "FactoMineR", "factoextra", "maps", "ggmap", "igraph", "rgl",
"tm", "SnowballC", "wordcloud", "slam", "Matrix", "RColorBrewer"
)
existing = as.character(installed.packages()[,1])
for(pkg in packages[!(packages %in% existing)]) install.packages(pkg)
rm(list=ls(all=T))
options(digits=4, scipen=12)
library(dplyr)
library(ggplot2)
library(maps)
library(ggmap)
7.1 ggplot2 繪圖套件
7.1.1 基本點狀圖
WHO = read.csv("data/WHO.csv")
# Basic Plot in R
plot(WHO$GNI, WHO$FertilityRate)

library(ggplot2)
# Create the ggplot object with the data and the aesthetic mapping:
scatterplot = ggplot(WHO, aes(x = GNI, y = FertilityRate))
# Add the geom_point geometry
scatterplot + geom_point()

# Make a line graph instead:
scatterplot + geom_line()

# Switch back to our points:
scatterplot + geom_point()

# Redo the plot with blue triangles instead of circles:
scatterplot + geom_point(color = "blue", size = 3, shape = 21)

# Another option:
scatterplot + geom_point(color = "darkred", size = 3, shape = 8)

# Add a title to the plot:
scatterplot +
geom_point(colour = "blue", size = 3, shape = 17) +
ggtitle("Fertility Rate vs. Gross National Income")

7.1.2 儲存圖檔
# Save our plot:
fertilityGNIplot = scatterplot +
geom_point(colour = "blue", size = 3, shape = 17) +
ggtitle("Fertility Rate vs. Gross National Income")
pdf("MyPlot.pdf")
print(fertilityGNIplot)
dev.off()
null device
1
7.1.3 圖形元件屬性
# Color the points by region:
ggplot(WHO, aes(x = GNI, y = FertilityRate, color = Region)) +
geom_point()

# Color the points according to life expectancy:
ggplot(WHO, aes(x = GNI, y = FertilityRate, color = LifeExpectancy)) +
geom_point()

# Is the fertility rate of a country was a good predictor of the
# percentage of the population under 15?
ggplot(WHO, aes(x = FertilityRate, y = Under15)) + geom_point()

7.1.4 數值尺度比例轉換
# Let's try a log transformation:
ggplot(WHO, aes(x = log(FertilityRate), y = Under15)) + geom_point()

7.1.5 回歸趨勢線
# Simple linear regression model to predict the percentage of the
# population under 15, using the log of the fertility rate:
mod = lm(Under15 ~ log(FertilityRate), data = WHO)
summary(mod)
Call:
lm(formula = Under15 ~ log(FertilityRate), data = WHO)
Residuals:
Min 1Q Median 3Q Max
-10.313 -1.774 0.045 1.744 7.717
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.654 0.448 17.1 <2e-16 ***
log(FertilityRate) 22.055 0.418 52.8 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.65 on 181 degrees of freedom
(11 observations deleted due to missingness)
Multiple R-squared: 0.939, Adjusted R-squared: 0.939
F-statistic: 2.79e+03 on 1 and 181 DF, p-value: <2e-16
# Add this regression line to our plot:
ggplot(WHO, aes(x = log(FertilityRate), y = Under15)) +
geom_point() + stat_smooth(method = "lm")

7.1.6 趨勢線的信賴區間
# 99% confidence interval
ggplot(WHO, aes(x = log(FertilityRate), y = Under15)) +
geom_point() + stat_smooth(method = "lm", level = 0.99)

# No confidence interval in the plot
ggplot(WHO, aes(x = log(FertilityRate), y = Under15)) +
geom_point() + stat_smooth(method = "lm", se = FALSE)

# Change the color of the regression line:
ggplot(WHO, aes(x = log(FertilityRate), y = Under15)) +
geom_point() + stat_smooth(method = "lm", colour = "orange")

7.1.7 分群點狀圖
# quiz-1:
ggplot(WHO, aes(x = FertilityRate, y = Under15, col=Region)) +
scale_color_brewer(palette="Accent") +
geom_point()

7.1.8 分格點狀圖
# quiz-1:
ggplot(WHO, aes(x = log(Population), y = GNI, color=Region)) +
geom_point() +
stat_smooth(method='lm') +
facet_wrap(~Region) + theme_bw()

LS0tDQp0aXRsZTogIkFTNy0wQSBnZ3Bsb3QyIOe5quWcluWll+S7tiINCmF1dGhvcjogIumZs+ato+isgCBsb3Vpc2FuMTIzIDIwMTgvMDgvMDMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQo8YnI+DQoNCmBgYHtyfQ0KU3lzLnNldGxvY2FsZSgiTENfQUxMIiwiQyIpDQpwYWNrYWdlcyA9IGMoDQogICJkcGx5ciIsImdncGxvdDIiLCJkM2hlYXRtYXAiLCJnb29nbGVWaXMiLCJkZXZ0b29scyIsInBsb3RseSIsICJ4Z2Jvb3N0IiwNCiAgIm1hZ3JpdHRyIiwiY2FUb29scyIsIlJPQ1IiLCJjb3JycGxvdCIsICJycGFydCIsICJycGFydC5wbG90IiwNCiAgImRvUGFyYWxsZWwiLCAiY2FyZXQiLCAiZ2xtbmV0IiwgIk1hdHJpeCIsICJlMTA3MSIsICJyYW5kb21Gb3Jlc3QiLA0KICAiZmxleGNsdXN0IiwgIkZhY3RvTWluZVIiLCAiZmFjdG9leHRyYSIsICJtYXBzIiwgImdnbWFwIiwgImlncmFwaCIsICJyZ2wiLA0KICAidG0iLCAiU25vd2JhbGxDIiwgIndvcmRjbG91ZCIsICJzbGFtIiwgIk1hdHJpeCIsICJSQ29sb3JCcmV3ZXIiDQogICkNCmV4aXN0aW5nID0gYXMuY2hhcmFjdGVyKGluc3RhbGxlZC5wYWNrYWdlcygpWywxXSkNCmZvcihwa2cgaW4gcGFja2FnZXNbIShwYWNrYWdlcyAlaW4lIGV4aXN0aW5nKV0pIGluc3RhbGwucGFja2FnZXMocGtnKQ0KYGBgDQoNCmBgYHtyIGVjaG89VCwgbWVzc2FnZT1GLCBjYWNoZT1GLCB3YXJuaW5nPUZ9DQpybShsaXN0PWxzKGFsbD1UKSkNCm9wdGlvbnMoZGlnaXRzPTQsIHNjaXBlbj0xMikNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KG1hcHMpDQpsaWJyYXJ5KGdnbWFwKQ0KYGBgDQoNCi0gLSAtDQoNCiMjIyA3LjEgYGdncGxvdDJgIOe5quWcluWll+S7tg0KDQojIyMjIyA3LjEuMSDln7rmnKzpu57ni4DlnJYNCmBgYHtyfQ0KV0hPID0gcmVhZC5jc3YoImRhdGEvV0hPLmNzdiIpDQpgYGANCg0KYGBge3J9DQojIEJhc2ljIFBsb3QgaW4gUiANCnBsb3QoV0hPJEdOSSwgV0hPJEZlcnRpbGl0eVJhdGUpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KGdncGxvdDIpDQojIENyZWF0ZSB0aGUgZ2dwbG90IG9iamVjdCB3aXRoIHRoZSBkYXRhIGFuZCB0aGUgYWVzdGhldGljIG1hcHBpbmc6DQpzY2F0dGVycGxvdCA9IGdncGxvdChXSE8sIGFlcyh4ID0gR05JLCB5ID0gRmVydGlsaXR5UmF0ZSkpDQpgYGANCg0KYGBge3J9DQojIEFkZCB0aGUgZ2VvbV9wb2ludCBnZW9tZXRyeQ0Kc2NhdHRlcnBsb3QgKyBnZW9tX3BvaW50KCkgDQpgYGANCg0KYGBge3J9DQojIE1ha2UgYSBsaW5lIGdyYXBoIGluc3RlYWQ6DQpzY2F0dGVycGxvdCArIGdlb21fbGluZSgpDQpgYGANCg0KYGBge3J9DQojIFN3aXRjaCBiYWNrIHRvIG91ciBwb2ludHM6DQpzY2F0dGVycGxvdCArIGdlb21fcG9pbnQoKQ0KYGBgDQoNCmBgYHtyfQ0KIyBSZWRvIHRoZSBwbG90IHdpdGggYmx1ZSB0cmlhbmdsZXMgaW5zdGVhZCBvZiBjaXJjbGVzOg0Kc2NhdHRlcnBsb3QgKyBnZW9tX3BvaW50KGNvbG9yID0gImJsdWUiLCBzaXplID0gMywgc2hhcGUgPSAyMSkNCmBgYA0KDQpgYGB7cn0NCiMgQW5vdGhlciBvcHRpb246DQpzY2F0dGVycGxvdCArIGdlb21fcG9pbnQoY29sb3IgPSAiZGFya3JlZCIsIHNpemUgPSAzLCBzaGFwZSA9IDgpDQpgYGANCg0KYGBge3J9DQojIEFkZCBhIHRpdGxlIHRvIHRoZSBwbG90Og0Kc2NhdHRlcnBsb3QgKyANCiAgZ2VvbV9wb2ludChjb2xvdXIgPSAiYmx1ZSIsIHNpemUgPSAzLCBzaGFwZSA9IDE3KSArIA0KICBnZ3RpdGxlKCJGZXJ0aWxpdHkgUmF0ZSB2cy4gR3Jvc3MgTmF0aW9uYWwgSW5jb21lIikNCmBgYA0KDQoNCiMjIyMjIDcuMS4yIOWEsuWtmOWcluaqlA0KYGBge3J9DQojIFNhdmUgb3VyIHBsb3Q6DQpmZXJ0aWxpdHlHTklwbG90ID0gc2NhdHRlcnBsb3QgKyANCiAgZ2VvbV9wb2ludChjb2xvdXIgPSAiYmx1ZSIsIHNpemUgPSAzLCBzaGFwZSA9IDE3KSArIA0KICBnZ3RpdGxlKCJGZXJ0aWxpdHkgUmF0ZSB2cy4gR3Jvc3MgTmF0aW9uYWwgSW5jb21lIikNCg0KcGRmKCJNeVBsb3QucGRmIikNCnByaW50KGZlcnRpbGl0eUdOSXBsb3QpDQpkZXYub2ZmKCkNCg0KYGBgDQoNCiMjIyMjIDcuMS4zIOWcluW9ouWFg+S7tuWxrOaApw0KYGBge3J9DQojIENvbG9yIHRoZSBwb2ludHMgYnkgcmVnaW9uOg0KZ2dwbG90KFdITywgYWVzKHggPSBHTkksIHkgPSBGZXJ0aWxpdHlSYXRlLCBjb2xvciA9IFJlZ2lvbikpICsgDQogIGdlb21fcG9pbnQoKQ0KYGBgDQoNCmBgYHtyfQ0KIyBDb2xvciB0aGUgcG9pbnRzIGFjY29yZGluZyB0byBsaWZlIGV4cGVjdGFuY3k6DQpnZ3Bsb3QoV0hPLCBhZXMoeCA9IEdOSSwgeSA9IEZlcnRpbGl0eVJhdGUsIGNvbG9yID0gTGlmZUV4cGVjdGFuY3kpKSArIA0KICBnZW9tX3BvaW50KCkNCmBgYA0KDQpgYGB7cn0NCiMgSXMgdGhlIGZlcnRpbGl0eSByYXRlIG9mIGEgY291bnRyeSB3YXMgYSBnb29kIHByZWRpY3RvciBvZiB0aGUgDQojIHBlcmNlbnRhZ2Ugb2YgdGhlIHBvcHVsYXRpb24gdW5kZXIgMTU/DQpnZ3Bsb3QoV0hPLCBhZXMoeCA9IEZlcnRpbGl0eVJhdGUsIHkgPSBVbmRlcjE1KSkgKyBnZW9tX3BvaW50KCkNCmBgYA0KDQojIyMjIyA3LjEuNCDmlbjlgLzlsLrluqbmr5TkvovovYnmj5sNCmBgYHtyfQ0KIyBMZXQncyB0cnkgYSBsb2cgdHJhbnNmb3JtYXRpb246DQpnZ3Bsb3QoV0hPLCBhZXMoeCA9IGxvZyhGZXJ0aWxpdHlSYXRlKSwgeSA9IFVuZGVyMTUpKSArIGdlb21fcG9pbnQoKQ0KYGBgDQoNCg0KIyMjIyMgNy4xLjUg5Zue5q246Lao5Yui57eaDQpgYGB7cn0NCiMgU2ltcGxlIGxpbmVhciByZWdyZXNzaW9uIG1vZGVsIHRvIHByZWRpY3QgdGhlIHBlcmNlbnRhZ2Ugb2YgdGhlIA0KIyBwb3B1bGF0aW9uIHVuZGVyIDE1LCB1c2luZyB0aGUgbG9nIG9mIHRoZSBmZXJ0aWxpdHkgcmF0ZToNCm1vZCA9IGxtKFVuZGVyMTUgfiBsb2coRmVydGlsaXR5UmF0ZSksIGRhdGEgPSBXSE8pDQpzdW1tYXJ5KG1vZCkNCmBgYA0KDQpgYGB7cn0NCiMgQWRkIHRoaXMgcmVncmVzc2lvbiBsaW5lIHRvIG91ciBwbG90Og0KZ2dwbG90KFdITywgYWVzKHggPSBsb2coRmVydGlsaXR5UmF0ZSksIHkgPSBVbmRlcjE1KSkgKyANCiAgZ2VvbV9wb2ludCgpICsgc3RhdF9zbW9vdGgobWV0aG9kID0gImxtIikNCmBgYA0KDQojIyMjIyA3LjEuNiDotqjli6Lnt5rnmoTkv6Hos7TljYDplpMNCmBgYHtyfQ0KIyA5OSUgY29uZmlkZW5jZSBpbnRlcnZhbA0KZ2dwbG90KFdITywgYWVzKHggPSBsb2coRmVydGlsaXR5UmF0ZSksIHkgPSBVbmRlcjE1KSkgKyANCiAgZ2VvbV9wb2ludCgpICsgc3RhdF9zbW9vdGgobWV0aG9kID0gImxtIiwgbGV2ZWwgPSAwLjk5KQ0KYGBgDQoNCmBgYHtyfQ0KIyBObyBjb25maWRlbmNlIGludGVydmFsIGluIHRoZSBwbG90DQpnZ3Bsb3QoV0hPLCBhZXMoeCA9IGxvZyhGZXJ0aWxpdHlSYXRlKSwgeSA9IFVuZGVyMTUpKSArIA0KICBnZW9tX3BvaW50KCkgKyBzdGF0X3Ntb290aChtZXRob2QgPSAibG0iLCBzZSA9IEZBTFNFKQ0KYGBgDQoNCmBgYHtyfQ0KIyBDaGFuZ2UgdGhlIGNvbG9yIG9mIHRoZSByZWdyZXNzaW9uIGxpbmU6DQpnZ3Bsb3QoV0hPLCBhZXMoeCA9IGxvZyhGZXJ0aWxpdHlSYXRlKSwgeSA9IFVuZGVyMTUpKSArIA0KICBnZW9tX3BvaW50KCkgKyBzdGF0X3Ntb290aChtZXRob2QgPSAibG0iLCBjb2xvdXIgPSAib3JhbmdlIikNCmBgYA0KDQojIyMjIyA3LjEuNyDliIbnvqTpu57ni4DlnJYNCmBgYHtyfQ0KIyBxdWl6LTE6DQpnZ3Bsb3QoV0hPLCBhZXMoeCA9IEZlcnRpbGl0eVJhdGUsIHkgPSBVbmRlcjE1LCBjb2w9UmVnaW9uKSkgKyANCiAgc2NhbGVfY29sb3JfYnJld2VyKHBhbGV0dGU9IkFjY2VudCIpICsNCiAgZ2VvbV9wb2ludCgpDQpgYGANCg0KIyMjIyMgNy4xLjgg5YiG5qC86bue54uA5ZyWDQpgYGB7cn0NCiMgcXVpei0xOg0KZ2dwbG90KFdITywgYWVzKHggPSBsb2coUG9wdWxhdGlvbiksIHkgPSBHTkksIGNvbG9yPVJlZ2lvbikpICsgDQogIGdlb21fcG9pbnQoKSArIA0KICBzdGF0X3Ntb290aChtZXRob2Q9J2xtJykgKw0KICBmYWNldF93cmFwKH5SZWdpb24pICsgdGhlbWVfYncoKQ0KYGBgDQoNCjxicj4NCg0KLSAtIC0NCg0KPGJyPjxicj48YnI+PGJyPjxicj4NCg0KPHN0eWxlPg0KLmNhcHRpb24gew0KICBjb2xvcjogIzc3NzsNCiAgbWFyZ2luLXRvcDogMTBweDsNCn0NCnAgY29kZSB7DQogIHdoaXRlLXNwYWNlOiBpbmhlcml0Ow0KfQ0KcHJlIHsNCiAgd29yZC1icmVhazogbm9ybWFsOw0KICB3b3JkLXdyYXA6IG5vcm1hbDsNCiAgbGluZS1oZWlnaHQ6IDE7DQp9DQpwcmUgY29kZSB7DQogIHdoaXRlLXNwYWNlOiBpbmhlcml0Ow0KfQ0KcCxsaSB7DQogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOw0KfQ0KDQoucnsNCiAgbGluZS1oZWlnaHQ6IDEuMjsNCn0NCg0KdGl0bGV7DQogIGNvbG9yOiAjY2MwMDAwOw0KICBmb250LWZhbWlseTogIlRyZWJ1Y2hldCBNUyIsICLlvq7ou5/mraPpu5Hpq5QiLCAiTWljcm9zb2Z0IEpoZW5nSGVpIjsNCn0NCg0KYm9keXsNCiAgZm9udC1mYW1pbHk6ICJUcmVidWNoZXQgTVMiLCAi5b6u6Luf5q2j6buR6auUIiwgIk1pY3Jvc29mdCBKaGVuZ0hlaSI7DQp9DQoNCmgxLGgyLGgzLGg0LGg1ew0KICBjb2xvcjogIzAwODgwMDsNCiAgZm9udC1mYW1pbHk6ICJUcmVidWNoZXQgTVMiLCAi5b6u6Luf5q2j6buR6auUIiwgIk1pY3Jvc29mdCBKaGVuZ0hlaSI7DQp9DQoNCmgzew0KICBjb2xvcjogI2IzNmIwMDsNCiAgYmFja2dyb3VuZDogI2ZmZTBiMzsNCiAgbGluZS1oZWlnaHQ6IDI7DQogIGZvbnQtd2VpZ2h0OiBib2xkOw0KfQ0KDQpoNXsNCiAgY29sb3I6ICMwMDYwMDA7DQogIGJhY2tncm91bmQ6ICNmZmZmZTA7DQogIGxpbmUtaGVpZ2h0OiAyOw0KICBmb250LXdlaWdodDogYm9sZDsNCn0NCg0KZW17DQogIGNvbG9yOiAjMDAwMGMwOw0KICBiYWNrZ3JvdW5kOiAjZjBmMGYwOw0KICB9DQo8L3N0eWxlPg0KDQo=