7.3 加強基本圖表
library(ggplot2)
# Load our data, which lives in intl.csv
intl = read.csv("data/intl.csv")
str(intl)
'data.frame': 8 obs. of 2 variables:
$ Region : Factor w/ 8 levels "Africa","Asia",..: 2 3 6 4 5 1 7 8
$ PercentOfIntl: num 0.531 0.201 0.098 0.09 0.054 0.02 0.015 0.002
7.3.1 Bar Plot with Quantities
# We want to make a bar plot with region on the X axis
# and Percentage on the y-axis.
ggplot(intl, aes(x=Region, y=PercentOfIntl)) +
geom_bar(stat="identity") +
geom_text(aes(label=PercentOfIntl))

# 繪製長條圖就必須要指定一個參數 stat = "identity"
7.3.2 Reorder by Column
# Make Region an ordered factor
# We can do this with the re-order command and transform command.
intl = transform(intl, Region = reorder(Region, -PercentOfIntl))
# that negative sign means decreasing order
# Make the percentages out of 100 instead of fractions
intl$PercentOfIntl = intl$PercentOfIntl * 100
# Make the plot
ggplot(intl, aes(x=Region, y=PercentOfIntl)) +
geom_bar(stat="identity", fill="dark blue") +
geom_text(aes(label=PercentOfIntl), vjust=-0.4) + # vjust:it moves the labels up a little bit
ylab("Percent of International Students") +
theme(axis.title.x = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1))

7.3 全球國際學生數量
7.3.3 Data for Intl’ Students
library(ggmap)
Warning message:
In scan(file = file, what = what, sep = sep, quote = quote, dec = dec, :
EOF within quoted string
# Load in the international student data
intlall = read.csv("data/intlall.csv",stringsAsFactors=FALSE)
# Lets look at the first few rows
# head(intlall)
# Those NAs are really 0s, and we can replace them easily
intlall[is.na(intlall)] = 0
# Now lets look again
head(intlall)
7.3.4 World Map
# Load the world map
world_map = map_data("world")
str(world_map)
'data.frame': 99338 obs. of 6 variables:
$ long : num -69.9 -69.9 -69.9 -70 -70.1 ...
$ lat : num 12.5 12.4 12.4 12.5 12.5 ...
$ group : num 1 1 1 1 1 1 1 1 1 1 ...
$ order : int 1 2 3 4 5 6 7 8 9 10 ...
$ region : chr "Aruba" "Aruba" "Aruba" "Aruba" ...
$ subregion: chr NA NA NA NA ...
7.3.5 Merge Map with Data
# Lets merge intlall into world_map using the merge command
world_map = merge(world_map, intlall, by.x ="region", by.y = "Citizenship")
str(world_map) #63634變少了,是因為查不到,所以丟掉
'data.frame': 63634 obs. of 12 variables:
$ region : chr "Albania" "Albania" "Albania" "Albania" ...
$ long : num 20.5 20.4 19.5 20.5 20.4 ...
$ lat : num 41.3 39.8 42.5 40.1 41.5 ...
$ group : num 6 6 6 6 6 6 6 6 6 6 ...
$ order : int 789 822 870 815 786 821 818 779 879 795 ...
$ subregion : chr NA NA NA NA ...
$ UG : num 3 3 3 3 3 3 3 3 3 3 ...
$ G : num 1 1 1 1 1 1 1 1 1 1 ...
$ SpecialUG : num 0 0 0 0 0 0 0 0 0 0 ...
$ SpecialG : num 0 0 0 0 0 0 0 0 0 0 ...
$ ExhangeVisiting: num 0 0 0 0 0 0 0 0 0 0 ...
$ Total : int 4 4 4 4 4 4 4 4 4 4 ...
7.3.6 Plot the Map
ggplot(world_map, aes(x=long, y=lat, group=group)) +
geom_polygon(fill="white", color="black") +
coord_map("mercator")

7.3.7 Polygon points need to be ordered by Group
# Reorder the data
world_map = world_map[order(world_map$group, world_map$order),]
# Redo the plot
ggplot(world_map, aes(x=long, y=lat, group=group)) +
geom_polygon(fill="white", color="black")

# + coord_map("mercator")
7.3.8 Identify and Fix Mismatchs between Map and Data
# Lets look for China
grep("China", intlall$Citizenship, ignore.case=T, value=T) #我要找china這個詞,大小寫不管,找到印出來給我看
[1] "China (People's Republic Of)"
Warning message:
In scan(file = file, what = what, sep = sep, quote = quote, dec = dec, :
EOF within quoted string
grep("China", unique(map_data("world")$region), ignore.case=T, value=T)
[1] "China"
# Lets "fix" that in the intlall dataset #用行政區界圖用顏色套圖,注意名稱要相同
intlall$Citizenship[intlall$Citizenship=="China (People's Republic Of)"] =
"China"
# We'll repeat our merge and order from before
world_map = merge(map_data("world"), intlall,
by.x ="region",
by.y = "Citizenship")
world_map = world_map[order(world_map$group, world_map$order),]
ggplot(world_map, aes(x=long, y=lat, group=group)) +
geom_polygon(aes(fill=Total), color="black") #+

#coord_map("mercator")
7.3.9 Different Orientations
# We can try other projections - this one is visually interesting
ggplot(world_map, aes(x=long, y=lat, group=group)) +
geom_polygon(aes(fill=Total), color="black") +
coord_map("ortho", orientation=c(20, 30, 0))

ggplot(world_map, aes(x=long, y=lat, group=group)) +
geom_polygon(aes(fill=Total), color="black") +
coord_map("ortho", orientation=c(-37, 175, 0))

7.3 資料結構轉換
7.3.10 Reshaping before Ploting
library(ggplot2)
library(reshape2)
# Now lets load our dataframe
households = read.csv("data/households.csv")
str(households)
'data.frame': 8 obs. of 7 variables:
$ Year : int 1970 1980 1990 1995 2000 2005 2010 2012
$ MarriedWChild : num 40.3 30.9 26.3 25.5 24.1 22.9 20.9 19.6
$ MarriedWOChild: num 30.3 29.9 29.8 28.9 28.7 28.3 28.8 29.1
$ OtherFamily : num 10.6 12.9 14.8 15.6 16 16.7 17.4 17.8
$ MenAlone : num 5.6 8.6 9.7 10.2 10.7 11.3 11.9 12.3
$ WomenAlone : num 11.5 14 14.9 14.7 14.8 15.3 14.8 15.2
$ OtherNonfamily: num 1.7 3.6 4.6 5 5.7 5.6 6.2 6.1
# Plot it
melt(households, id="Year") %>%
ggplot(aes(x=Year, y=value, color=variable)) +
geom_line(size=2) + geom_point(size=5) +
ylab("Percentage of Households")

LS0tDQp0aXRsZTogIkFTNy0wQyDkuJbnlYzlnLDlnJYiDQphdXRob3I6ICLkvZXoqp7lqZUgTTA2NDAyMDA0MCwgMjAxOC8wOC8wMiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCjxicj4NCg0KYGBge3IgZWNobz1ULCBtZXNzYWdlPUYsIGNhY2hlPUYsIHdhcm5pbmc9Rn0NCnJtKGxpc3Q9bHMoYWxsPVQpKQ0Kb3B0aW9ucyhkaWdpdHM9NCwgc2NpcGVuPTEyKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkobWFwcykNCmxpYnJhcnkoZ2dtYXApDQpsaWJyYXJ5KHJlc2hhcGUyKQ0KYGBgDQoNCi0gLSAtDQoNCiMjIyA3LjMg5Yqg5by35Z+65pys5ZyW6KGoDQoNCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KDQojIExvYWQgb3VyIGRhdGEsIHdoaWNoIGxpdmVzIGluIGludGwuY3N2DQppbnRsID0gcmVhZC5jc3YoImRhdGEvaW50bC5jc3YiKQ0Kc3RyKGludGwpDQpgYGANCg0KIyMjIyMgNy4zLjEgQmFyIFBsb3Qgd2l0aCBRdWFudGl0aWVzDQpgYGB7cn0NCiMgV2Ugd2FudCB0byBtYWtlIGEgYmFyIHBsb3Qgd2l0aCByZWdpb24gb24gdGhlIFggYXhpcw0KIyBhbmQgUGVyY2VudGFnZSBvbiB0aGUgeS1heGlzLg0KZ2dwbG90KGludGwsIGFlcyh4PVJlZ2lvbiwgeT1QZXJjZW50T2ZJbnRsKSkgKw0KICBnZW9tX2JhcihzdGF0PSJpZGVudGl0eSIpICsNCiAgZ2VvbV90ZXh0KGFlcyhsYWJlbD1QZXJjZW50T2ZJbnRsKSkNCiMg57mq6KO96ZW35qKd5ZyW5bCx5b+F6aCI6KaB5oyH5a6a5LiA5YCL5Y+D5pW4IHN0YXQgPSAiaWRlbnRpdHkiDQpgYGANCg0KIyMjIyMgNy4zLjIgUmVvcmRlciBieSBDb2x1bW4NCmBgYHtyfQ0KIyBNYWtlIFJlZ2lvbiBhbiBvcmRlcmVkIGZhY3Rvcg0KIyBXZSBjYW4gZG8gdGhpcyB3aXRoIHRoZSByZS1vcmRlciBjb21tYW5kIGFuZCB0cmFuc2Zvcm0gY29tbWFuZC4gDQppbnRsID0gdHJhbnNmb3JtKGludGwsIFJlZ2lvbiA9IHJlb3JkZXIoUmVnaW9uLCAtUGVyY2VudE9mSW50bCkpDQojIHRoYXQgbmVnYXRpdmUgc2lnbiBtZWFucyBkZWNyZWFzaW5nIG9yZGVyDQoNCiMgTWFrZSB0aGUgcGVyY2VudGFnZXMgb3V0IG9mIDEwMCBpbnN0ZWFkIG9mIGZyYWN0aW9ucw0KaW50bCRQZXJjZW50T2ZJbnRsID0gaW50bCRQZXJjZW50T2ZJbnRsICogMTAwDQoNCiMgTWFrZSB0aGUgcGxvdA0KZ2dwbG90KGludGwsIGFlcyh4PVJlZ2lvbiwgeT1QZXJjZW50T2ZJbnRsKSkgKw0KICBnZW9tX2JhcihzdGF0PSJpZGVudGl0eSIsIGZpbGw9ImRhcmsgYmx1ZSIpICsNCiAgZ2VvbV90ZXh0KGFlcyhsYWJlbD1QZXJjZW50T2ZJbnRsKSwgdmp1c3Q9LTAuNCkgKyAgIyB2anVzdDppdCBtb3ZlcyB0aGUgbGFiZWxzIHVwIGEgbGl0dGxlIGJpdA0KICB5bGFiKCJQZXJjZW50IG9mIEludGVybmF0aW9uYWwgU3R1ZGVudHMiKSArDQogIHRoZW1lKGF4aXMudGl0bGUueCA9IGVsZW1lbnRfYmxhbmsoKSwgDQogICAgICAgIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gNDUsIGhqdXN0ID0gMSkpDQpgYGANCjxicj4NCg0KLSAtIC0NCg0KIyMjIDcuMyDlhajnkIPlnIvpmpvlrbjnlJ/mlbjph48NCg0KIyMjIyMgNy4zLjMgRGF0YSBmb3IgSW50bCcgU3R1ZGVudHMNCmBgYHtyfQ0KbGlicmFyeShnZ21hcCkNCg0KIyBMb2FkIGluIHRoZSBpbnRlcm5hdGlvbmFsIHN0dWRlbnQgZGF0YQ0KaW50bGFsbCA9IHJlYWQuY3N2KCJkYXRhL2ludGxhbGwuY3N2IixzdHJpbmdzQXNGYWN0b3JzPUZBTFNFKQ0KDQojIExldHMgbG9vayBhdCB0aGUgZmlyc3QgZmV3IHJvd3MNCiMgaGVhZChpbnRsYWxsKQ0KDQojIFRob3NlIE5BcyBhcmUgcmVhbGx5IDBzLCBhbmQgd2UgY2FuIHJlcGxhY2UgdGhlbSBlYXNpbHkNCmludGxhbGxbaXMubmEoaW50bGFsbCldID0gMA0KDQojIE5vdyBsZXRzIGxvb2sgYWdhaW4NCmhlYWQoaW50bGFsbCkgDQpgYGANCg0KIyMjIyMgNy4zLjQgV29ybGQgTWFwDQpgYGB7cn0NCiMgTG9hZCB0aGUgd29ybGQgbWFwDQp3b3JsZF9tYXAgPSBtYXBfZGF0YSgid29ybGQiKQ0Kc3RyKHdvcmxkX21hcCkNCmBgYA0KDQojIyMjIyA3LjMuNSBNZXJnZSBNYXAgd2l0aCBEYXRhDQpgYGB7cn0NCiMgTGV0cyBtZXJnZSBpbnRsYWxsIGludG8gd29ybGRfbWFwIHVzaW5nIHRoZSBtZXJnZSBjb21tYW5kDQp3b3JsZF9tYXAgPSBtZXJnZSh3b3JsZF9tYXAsIGludGxhbGwsIGJ5LnggPSJyZWdpb24iLCBieS55ID0gIkNpdGl6ZW5zaGlwIikNCnN0cih3b3JsZF9tYXApICAjNjM2MzTororlsJHkuobvvIzmmK/lm6Dngrrmn6XkuI3liLDvvIzmiYDku6XkuJ/mjokNCmBgYA0KDQojIyMjIyA3LjMuNiBQbG90IHRoZSBNYXANCmBgYHtyfQ0KZ2dwbG90KHdvcmxkX21hcCwgYWVzKHg9bG9uZywgeT1sYXQsIGdyb3VwPWdyb3VwKSkgKw0KICBnZW9tX3BvbHlnb24oZmlsbD0id2hpdGUiLCBjb2xvcj0iYmxhY2siKSArDQogIGNvb3JkX21hcCgibWVyY2F0b3IiKQ0KYGBgDQoNCiMjIyMjIDcuMy43IFBvbHlnb24gcG9pbnRzIG5lZWQgdG8gYmUgb3JkZXJlZCBieSBHcm91cA0KYGBge3J9DQojIFJlb3JkZXIgdGhlIGRhdGENCndvcmxkX21hcCA9IHdvcmxkX21hcFtvcmRlcih3b3JsZF9tYXAkZ3JvdXAsIHdvcmxkX21hcCRvcmRlciksXQ0KDQojIFJlZG8gdGhlIHBsb3QNCmdncGxvdCh3b3JsZF9tYXAsIGFlcyh4PWxvbmcsIHk9bGF0LCBncm91cD1ncm91cCkpICsNCiAgZ2VvbV9wb2x5Z29uKGZpbGw9IndoaXRlIiwgY29sb3I9ImJsYWNrIikNCiAgIyArIGNvb3JkX21hcCgibWVyY2F0b3IiKQ0KYGBgDQoNCiMjIyMjIDcuMy44IElkZW50aWZ5IGFuZCBGaXggTWlzbWF0Y2hzIGJldHdlZW4gTWFwIGFuZCBEYXRhDQpgYGB7cn0NCiMgTGV0cyBsb29rIGZvciBDaGluYQ0KZ3JlcCgiQ2hpbmEiLCBpbnRsYWxsJENpdGl6ZW5zaGlwLCBpZ25vcmUuY2FzZT1ULCB2YWx1ZT1UKSAgI+aIkeimgeaJvmNoaW5h6YCZ5YCL6Kme77yM5aSn5bCP5a+r5LiN566h77yM5om+5Yiw5Y2w5Ye65L6G57Wm5oiR55yLDQpncmVwKCJDaGluYSIsIHVuaXF1ZShtYXBfZGF0YSgid29ybGQiKSRyZWdpb24pLCBpZ25vcmUuY2FzZT1ULCB2YWx1ZT1UKSANCmBgYA0KDQpgYGB7cn0NCiMgTGV0cyAiZml4IiB0aGF0IGluIHRoZSBpbnRsYWxsIGRhdGFzZXQgICPnlKjooYzmlL/ljYDnlYzlnJbnlKjpoY/oibLlpZflnJbvvIzms6jmhI/lkI3nqLHopoHnm7jlkIwNCmludGxhbGwkQ2l0aXplbnNoaXBbaW50bGFsbCRDaXRpemVuc2hpcD09IkNoaW5hIChQZW9wbGUncyBSZXB1YmxpYyBPZikiXSA9IA0KICAiQ2hpbmEiDQoNCiMgV2UnbGwgcmVwZWF0IG91ciBtZXJnZSBhbmQgb3JkZXIgZnJvbSBiZWZvcmUNCndvcmxkX21hcCA9IG1lcmdlKG1hcF9kYXRhKCJ3b3JsZCIpLCBpbnRsYWxsLCANCiAgICAgICAgICAgICAgICAgIGJ5LnggPSJyZWdpb24iLA0KICAgICAgICAgICAgICAgICAgYnkueSA9ICJDaXRpemVuc2hpcCIpDQp3b3JsZF9tYXAgPSB3b3JsZF9tYXBbb3JkZXIod29ybGRfbWFwJGdyb3VwLCB3b3JsZF9tYXAkb3JkZXIpLF0NCg0KZ2dwbG90KHdvcmxkX21hcCwgYWVzKHg9bG9uZywgeT1sYXQsIGdyb3VwPWdyb3VwKSkgKw0KICBnZW9tX3BvbHlnb24oYWVzKGZpbGw9VG90YWwpLCBjb2xvcj0iYmxhY2siKSAjKw0KICAjY29vcmRfbWFwKCJtZXJjYXRvciIpDQpgYGANCg0KIyMjIyMgNy4zLjkgRGlmZmVyZW50IE9yaWVudGF0aW9ucw0KYGBge3J9DQojIFdlIGNhbiB0cnkgb3RoZXIgcHJvamVjdGlvbnMgLSB0aGlzIG9uZSBpcyB2aXN1YWxseSBpbnRlcmVzdGluZw0KZ2dwbG90KHdvcmxkX21hcCwgYWVzKHg9bG9uZywgeT1sYXQsIGdyb3VwPWdyb3VwKSkgKw0KICBnZW9tX3BvbHlnb24oYWVzKGZpbGw9VG90YWwpLCBjb2xvcj0iYmxhY2siKSArDQogIGNvb3JkX21hcCgib3J0aG8iLCBvcmllbnRhdGlvbj1jKDIwLCAzMCwgMCkpDQpgYGANCg0KYGBge3J9DQpnZ3Bsb3Qod29ybGRfbWFwLCBhZXMoeD1sb25nLCB5PWxhdCwgZ3JvdXA9Z3JvdXApKSArDQogIGdlb21fcG9seWdvbihhZXMoZmlsbD1Ub3RhbCksIGNvbG9yPSJibGFjayIpICsNCiAgY29vcmRfbWFwKCJvcnRobyIsIG9yaWVudGF0aW9uPWMoLTM3LCAxNzUsIDApKQ0KYGBgDQo8YnI+DQoNCi0gLSAtDQoNCiMjIyA3LjMg6LOH5paZ57WQ5qeL6L2J5o+bDQoNCiMjIyMjIDcuMy4xMCBSZXNoYXBpbmcgYmVmb3JlIFBsb3RpbmcNCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShyZXNoYXBlMikNCiMgTm93IGxldHMgbG9hZCBvdXIgZGF0YWZyYW1lDQpob3VzZWhvbGRzID0gcmVhZC5jc3YoImRhdGEvaG91c2Vob2xkcy5jc3YiKQ0Kc3RyKGhvdXNlaG9sZHMpDQpgYGANCg0KYGBge3J9DQojIFBsb3QgaXQNCm1lbHQoaG91c2Vob2xkcywgaWQ9IlllYXIiKSAlPiUgDQogIGdncGxvdChhZXMoeD1ZZWFyLCB5PXZhbHVlLCBjb2xvcj12YXJpYWJsZSkpICsNCiAgZ2VvbV9saW5lKHNpemU9MikgKyBnZW9tX3BvaW50KHNpemU9NSkgKyAgDQogIHlsYWIoIlBlcmNlbnRhZ2Ugb2YgSG91c2Vob2xkcyIpDQpgYGANCjxicj4NCg0KLSAtIC0NCg0KPGJyPjxicj48YnI+PGJyPjxicj4NCg0KPHN0eWxlPg0KLmNhcHRpb24gew0KICBjb2xvcjogIzc3NzsNCiAgbWFyZ2luLXRvcDogMTBweDsNCn0NCnAgY29kZSB7DQogIHdoaXRlLXNwYWNlOiBpbmhlcml0Ow0KfQ0KcHJlIHsNCiAgd29yZC1icmVhazogbm9ybWFsOw0KICB3b3JkLXdyYXA6IG5vcm1hbDsNCiAgbGluZS1oZWlnaHQ6IDE7DQp9DQpwcmUgY29kZSB7DQogIHdoaXRlLXNwYWNlOiBpbmhlcml0Ow0KfQ0KcCxsaSB7DQogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOw0KfQ0KDQoucnsNCiAgbGluZS1oZWlnaHQ6IDEuMjsNCn0NCg0KdGl0bGV7DQogIGNvbG9yOiAjY2MwMDAwOw0KICBmb250LWZhbWlseTogIlRyZWJ1Y2hldCBNUyIsICLlvq7ou5/mraPpu5Hpq5QiLCAiTWljcm9zb2Z0IEpoZW5nSGVpIjsNCn0NCg0KYm9keXsNCiAgZm9udC1mYW1pbHk6ICJUcmVidWNoZXQgTVMiLCAi5b6u6Luf5q2j6buR6auUIiwgIk1pY3Jvc29mdCBKaGVuZ0hlaSI7DQp9DQoNCmgxLGgyLGgzLGg0LGg1ew0KICBjb2xvcjogIzAwODgwMDsNCiAgZm9udC1mYW1pbHk6ICJUcmVidWNoZXQgTVMiLCAi5b6u6Luf5q2j6buR6auUIiwgIk1pY3Jvc29mdCBKaGVuZ0hlaSI7DQp9DQoNCmgzew0KICBjb2xvcjogI2IzNmIwMDsNCiAgYmFja2dyb3VuZDogI2ZmZTBiMzsNCiAgbGluZS1oZWlnaHQ6IDI7DQogIGZvbnQtd2VpZ2h0OiBib2xkOw0KfQ0KDQpoNXsNCiAgY29sb3I6ICMwMDYwMDA7DQogIGJhY2tncm91bmQ6ICNmZmZmZTA7DQogIGxpbmUtaGVpZ2h0OiAyOw0KICBmb250LXdlaWdodDogYm9sZDsNCn0NCg0KZW17DQogIGNvbG9yOiAjMDAwMGMwOw0KICBiYWNrZ3JvdW5kOiAjZjBmMGYwOw0KICB9DQo8L3N0eWxlPg0KDQo=