Sys.setlocale("LC_ALL","C")
[1] "C"
packages = c(
"dplyr","ggplot2","d3heatmap","googleVis","devtools","plotly", "xgboost",
"magrittr","caTools","ROCR","corrplot", "rpart", "rpart.plot",
"doParallel", "caret", "glmnet", "Matrix", "e1071", "randomForest",
"flexclust", "FactoMineR", "factoextra", "maps", "ggmap", "igraph", "rgl",
"tm", "SnowballC", "wordcloud", "slam", "Matrix", "RColorBrewer"
)
existing = as.character(installed.packages()[,1])
for(pkg in packages[!(packages %in% existing)]) install.packages(pkg)
rm(list=ls(all=T))
options(digits=4, scipen=12)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(ggplot2)
library(maps)
library(ggmap)
Google Maps API Terms of Service: http://developers.google.com/maps/terms.
Please cite ggmap if you use it: see citation('ggmap') for details.
setwd("~/big data/Unit7/CD7")
7.1 ggplot2 繪圖套件
7.1.1 基本點狀圖
WHO = read.csv("data/WHO.csv")
# Basic Plot in R
plot(WHO$GNI, WHO$FertilityRate) #用R的基本繪圖畫的散佈圖

library(ggplot2)
# Create the ggplot object with the data and the aesthetic mapping:
scatterplot = ggplot(WHO, aes(x = GNI, y = FertilityRate)) #轉成繪圖物件
# Add the geom_point geometry
scatterplot + geom_point() #ggplot2所畫的散佈圖

# Make a line graph instead:
scatterplot + geom_line() #將點圖變為線圖

# Switch back to our points:
scatterplot + geom_point()

# Redo the plot with blue triangles instead of circles:
scatterplot + geom_point(color = "blue", size = 3, shape = 21) #調整點的顏色、大小和形狀

# Another option:
scatterplot + geom_point(color = "darkred", size = 3, shape = 8)

# Add a title to the plot:
scatterplot +
geom_point(colour = "blue", size = 3, shape = 17) +
ggtitle("Fertility Rate vs. Gross National Income")

#加入標題
7.1.2 儲存圖檔
# Save our plot:
fertilityGNIplot = scatterplot +
geom_point(colour = "blue", size = 3, shape = 17) +
ggtitle("Fertility Rate vs. Gross National Income")
pdf("MyPlot.pdf")
print(fertilityGNIplot)
dev.off()
null device
1
#存圖
7.1.3 圖形元件屬性
# Color the points by region:
ggplot(WHO, aes(x = GNI, y = FertilityRate, color = Region)) +
geom_point()

#color可以根據factor的變數,而形成分類的效果
# Color the points according to life expectancy:
ggplot(WHO, aes(x = GNI, y = FertilityRate, color = LifeExpectancy)) +
geom_point()

#也可以根據數值,形成顏色深淺的對比
# Is the fertility rate of a country was a good predictor of the
# percentage of the population under 15?
ggplot(WHO, aes(x = FertilityRate, y = Under15)) + geom_point()

7.1.4 數值尺度比例轉換
# Let's try a log transformation:
ggplot(WHO, aes(x = log(FertilityRate), y = Under15)) + geom_point()

7.1.5 回歸趨勢線
# Simple linear regression model to predict the percentage of the
# population under 15, using the log of the fertility rate:
mod = lm(Under15 ~ log(FertilityRate), data = WHO)
summary(mod)
Call:
lm(formula = Under15 ~ log(FertilityRate), data = WHO)
Residuals:
Min 1Q Median 3Q Max
-10.313 -1.774 0.045 1.744 7.717
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.654 0.448 17.1 <2e-16 ***
log(FertilityRate) 22.055 0.418 52.8 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.65 on 181 degrees of freedom
(11 observations deleted due to missingness)
Multiple R-squared: 0.939, Adjusted R-squared: 0.939
F-statistic: 2.79e+03 on 1 and 181 DF, p-value: <2e-16
# Add this regression line to our plot:
ggplot(WHO, aes(x = log(FertilityRate), y = Under15)) +
geom_point() + stat_smooth(method = "lm")

7.1.6 趨勢線的信賴區間
# 99% confidence interval
ggplot(WHO, aes(x = log(FertilityRate), y = Under15)) +
geom_point() + stat_smooth(method = "lm", level = 0.99)

#灰色部分即為信賴區間,信賴區間是平均數的概念,而非點。
# No confidence interval in the plot
ggplot(WHO, aes(x = log(FertilityRate), y = Under15)) +
geom_point() + stat_smooth(method = "lm", se = FALSE)

#se為是否要表示出信賴區間
# Change the color of the regression line:
ggplot(WHO, aes(x = log(FertilityRate), y = Under15)) +
geom_point() + stat_smooth(method = "lm", colour = "orange")

7.1.7 分群點狀圖
# quiz-1:
ggplot(WHO, aes(x = FertilityRate, y = Under15, col=Region)) +
scale_color_brewer(palette="Accent") +
geom_point()

#點與點之間的關係,是否因factor而有所不同
7.1.8 分格點狀圖
# quiz-1:
ggplot(WHO, aes(x = log(Population), y = GNI, color=Region)) +
geom_point() +
stat_smooth(method='lm') +
facet_wrap(~Region) + theme_bw()

#facet_wrap可以分面
LS0tDQp0aXRsZTogIkFTNy0wQSBnZ3Bsb3QyIOe5quWcluWll+S7tiINCmF1dGhvcjogIuWQs+aYh+asve+8jE0wNjQwMzAwMTIiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQo8YnI+DQoNCmBgYHtyfQ0KU3lzLnNldGxvY2FsZSgiTENfQUxMIiwiQyIpDQpwYWNrYWdlcyA9IGMoDQogICJkcGx5ciIsImdncGxvdDIiLCJkM2hlYXRtYXAiLCJnb29nbGVWaXMiLCJkZXZ0b29scyIsInBsb3RseSIsICJ4Z2Jvb3N0IiwNCiAgIm1hZ3JpdHRyIiwiY2FUb29scyIsIlJPQ1IiLCJjb3JycGxvdCIsICJycGFydCIsICJycGFydC5wbG90IiwNCiAgImRvUGFyYWxsZWwiLCAiY2FyZXQiLCAiZ2xtbmV0IiwgIk1hdHJpeCIsICJlMTA3MSIsICJyYW5kb21Gb3Jlc3QiLA0KICAiZmxleGNsdXN0IiwgIkZhY3RvTWluZVIiLCAiZmFjdG9leHRyYSIsICJtYXBzIiwgImdnbWFwIiwgImlncmFwaCIsICJyZ2wiLA0KICAidG0iLCAiU25vd2JhbGxDIiwgIndvcmRjbG91ZCIsICJzbGFtIiwgIk1hdHJpeCIsICJSQ29sb3JCcmV3ZXIiDQogICkNCmV4aXN0aW5nID0gYXMuY2hhcmFjdGVyKGluc3RhbGxlZC5wYWNrYWdlcygpWywxXSkNCmZvcihwa2cgaW4gcGFja2FnZXNbIShwYWNrYWdlcyAlaW4lIGV4aXN0aW5nKV0pIGluc3RhbGwucGFja2FnZXMocGtnKQ0KYGBgDQoNCmBgYHtyIGVjaG89VCwgbWVzc2FnZT1GLCBjYWNoZT1GLCB3YXJuaW5nPUZ9DQpybShsaXN0PWxzKGFsbD1UKSkNCm9wdGlvbnMoZGlnaXRzPTQsIHNjaXBlbj0xMikNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KG1hcHMpDQpsaWJyYXJ5KGdnbWFwKQ0Kc2V0d2QoIn4vYmlnIGRhdGEvVW5pdDcvQ0Q3IikNCmBgYA0KDQotIC0gLQ0KDQojIyMgNy4xIGBnZ3Bsb3QyYCDnuarlnJblpZfku7YNCg0KIyMjIyMgNy4xLjEg5Z+65pys6bue54uA5ZyWDQpgYGB7cn0NCldITyA9IHJlYWQuY3N2KCJkYXRhL1dITy5jc3YiKQ0KYGBgDQoNCmBgYHtyfQ0KIyBCYXNpYyBQbG90IGluIFIgDQpwbG90KFdITyRHTkksIFdITyRGZXJ0aWxpdHlSYXRlKSAj55SoUueahOWfuuacrOe5quWclueVq+eahOaVo+S9iOWclg0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KIyBDcmVhdGUgdGhlIGdncGxvdCBvYmplY3Qgd2l0aCB0aGUgZGF0YSBhbmQgdGhlIGFlc3RoZXRpYyBtYXBwaW5nOg0Kc2NhdHRlcnBsb3QgPSBnZ3Bsb3QoV0hPLCBhZXMoeCA9IEdOSSwgeSA9IEZlcnRpbGl0eVJhdGUpKSAgI+i9ieaIkOe5quWclueJqeS7tg0KYGBgDQoNCmBgYHtyfQ0KIyBBZGQgdGhlIGdlb21fcG9pbnQgZ2VvbWV0cnkNCnNjYXR0ZXJwbG90ICsgZ2VvbV9wb2ludCgpICNnZ3Bsb3Qy5omA55Wr55qE5pWj5L2I5ZyWDQpgYGANCg0KYGBge3J9DQojIE1ha2UgYSBsaW5lIGdyYXBoIGluc3RlYWQ6DQpzY2F0dGVycGxvdCArIGdlb21fbGluZSgpICPlsIfpu57lnJbororngrrnt5rlnJYNCmBgYA0KDQpgYGB7cn0NCiMgU3dpdGNoIGJhY2sgdG8gb3VyIHBvaW50czoNCnNjYXR0ZXJwbG90ICsgZ2VvbV9wb2ludCgpDQpgYGANCg0KYGBge3J9DQojIFJlZG8gdGhlIHBsb3Qgd2l0aCBibHVlIHRyaWFuZ2xlcyBpbnN0ZWFkIG9mIGNpcmNsZXM6DQpzY2F0dGVycGxvdCArIGdlb21fcG9pbnQoY29sb3IgPSAiYmx1ZSIsIHNpemUgPSAzLCBzaGFwZSA9IDIxKSAj6Kq/5pW06bue55qE6aGP6Imy44CB5aSn5bCP5ZKM5b2i54uADQpgYGANCg0KYGBge3J9DQojIEFub3RoZXIgb3B0aW9uOg0Kc2NhdHRlcnBsb3QgKyBnZW9tX3BvaW50KGNvbG9yID0gImRhcmtyZWQiLCBzaXplID0gMywgc2hhcGUgPSA4KQ0KYGBgDQoNCmBgYHtyfQ0KIyBBZGQgYSB0aXRsZSB0byB0aGUgcGxvdDoNCnNjYXR0ZXJwbG90ICsgDQogIGdlb21fcG9pbnQoY29sb3VyID0gImJsdWUiLCBzaXplID0gMywgc2hhcGUgPSAxNykgKyANCiAgZ2d0aXRsZSgiRmVydGlsaXR5IFJhdGUgdnMuIEdyb3NzIE5hdGlvbmFsIEluY29tZSIpDQoj5Yqg5YWl5qiZ6aGMDQpgYGANCg0KDQojIyMjIyA3LjEuMiDlhLLlrZjlnJbmqpQNCmBgYHtyfQ0KIyBTYXZlIG91ciBwbG90Og0KZmVydGlsaXR5R05JcGxvdCA9IHNjYXR0ZXJwbG90ICsgDQogIGdlb21fcG9pbnQoY29sb3VyID0gImJsdWUiLCBzaXplID0gMywgc2hhcGUgPSAxNykgKyANCiAgZ2d0aXRsZSgiRmVydGlsaXR5IFJhdGUgdnMuIEdyb3NzIE5hdGlvbmFsIEluY29tZSIpDQoNCnBkZigiTXlQbG90LnBkZiIpDQpwcmludChmZXJ0aWxpdHlHTklwbG90KQ0KZGV2Lm9mZigpDQoj5a2Y5ZyWDQpgYGANCg0KIyMjIyMgNy4xLjMg5ZyW5b2i5YWD5Lu25bGs5oCnDQpgYGB7cn0NCiMgQ29sb3IgdGhlIHBvaW50cyBieSByZWdpb246DQpnZ3Bsb3QoV0hPLCBhZXMoeCA9IEdOSSwgeSA9IEZlcnRpbGl0eVJhdGUsIGNvbG9yID0gUmVnaW9uKSkgKyANCiAgZ2VvbV9wb2ludCgpDQojY29sb3Llj6/ku6XmoLnmk5pmYWN0b3LnmoTorormlbjvvIzogIzlvaLmiJDliIbpoZ7nmoTmlYjmnpwNCmBgYA0KDQpgYGB7cn0NCiMgQ29sb3IgdGhlIHBvaW50cyBhY2NvcmRpbmcgdG8gbGlmZSBleHBlY3RhbmN5Og0KZ2dwbG90KFdITywgYWVzKHggPSBHTkksIHkgPSBGZXJ0aWxpdHlSYXRlLCBjb2xvciA9IExpZmVFeHBlY3RhbmN5KSkgKyANCiAgZ2VvbV9wb2ludCgpDQoj5Lmf5Y+v5Lul5qC55pOa5pW45YC877yM5b2i5oiQ6aGP6Imy5rex5re655qE5bCN5q+UDQpgYGANCg0KYGBge3J9DQojIElzIHRoZSBmZXJ0aWxpdHkgcmF0ZSBvZiBhIGNvdW50cnkgd2FzIGEgZ29vZCBwcmVkaWN0b3Igb2YgdGhlIA0KIyBwZXJjZW50YWdlIG9mIHRoZSBwb3B1bGF0aW9uIHVuZGVyIDE1Pw0KZ2dwbG90KFdITywgYWVzKHggPSBGZXJ0aWxpdHlSYXRlLCB5ID0gVW5kZXIxNSkpICsgZ2VvbV9wb2ludCgpDQpgYGANCg0KIyMjIyMgNy4xLjQg5pW45YC85bC65bqm5q+U5L6L6L2J5o+bDQpgYGB7cn0NCiMgTGV0J3MgdHJ5IGEgbG9nIHRyYW5zZm9ybWF0aW9uOg0KZ2dwbG90KFdITywgYWVzKHggPSBsb2coRmVydGlsaXR5UmF0ZSksIHkgPSBVbmRlcjE1KSkgKyBnZW9tX3BvaW50KCkNCmBgYA0KDQoNCiMjIyMjIDcuMS41IOWbnuatuOi2qOWLoue3mg0KYGBge3J9DQojIFNpbXBsZSBsaW5lYXIgcmVncmVzc2lvbiBtb2RlbCB0byBwcmVkaWN0IHRoZSBwZXJjZW50YWdlIG9mIHRoZSANCiMgcG9wdWxhdGlvbiB1bmRlciAxNSwgdXNpbmcgdGhlIGxvZyBvZiB0aGUgZmVydGlsaXR5IHJhdGU6DQptb2QgPSBsbShVbmRlcjE1IH4gbG9nKEZlcnRpbGl0eVJhdGUpLCBkYXRhID0gV0hPKQ0Kc3VtbWFyeShtb2QpDQpgYGANCg0KYGBge3J9DQojIEFkZCB0aGlzIHJlZ3Jlc3Npb24gbGluZSB0byBvdXIgcGxvdDoNCmdncGxvdChXSE8sIGFlcyh4ID0gbG9nKEZlcnRpbGl0eVJhdGUpLCB5ID0gVW5kZXIxNSkpICsgDQogIGdlb21fcG9pbnQoKSArIHN0YXRfc21vb3RoKG1ldGhvZCA9ICJsbSIpDQpgYGANCg0KIyMjIyMgNy4xLjYg6Lao5Yui57ea55qE5L+h6LO05Y2A6ZaTDQpgYGB7cn0NCiMgOTklIGNvbmZpZGVuY2UgaW50ZXJ2YWwNCmdncGxvdChXSE8sIGFlcyh4ID0gbG9nKEZlcnRpbGl0eVJhdGUpLCB5ID0gVW5kZXIxNSkpICsgDQogIGdlb21fcG9pbnQoKSArIHN0YXRfc21vb3RoKG1ldGhvZCA9ICJsbSIsIGxldmVsID0gMC45OSkNCiPngbDoibLpg6jliIbljbPngrrkv6Hos7TljYDplpPvvIzkv6Hos7TljYDplpPmmK/lubPlnYfmlbjnmoTmpoLlv7XvvIzogIzpnZ7pu57jgIINCmBgYA0KDQpgYGB7cn0NCiMgTm8gY29uZmlkZW5jZSBpbnRlcnZhbCBpbiB0aGUgcGxvdA0KZ2dwbG90KFdITywgYWVzKHggPSBsb2coRmVydGlsaXR5UmF0ZSksIHkgPSBVbmRlcjE1KSkgKyANCiAgZ2VvbV9wb2ludCgpICsgc3RhdF9zbW9vdGgobWV0aG9kID0gImxtIiwgc2UgPSBGQUxTRSkNCiNzZeeCuuaYr+WQpuimgeihqOekuuWHuuS/oeiztOWNgOmWkw0KYGBgDQoNCmBgYHtyfQ0KIyBDaGFuZ2UgdGhlIGNvbG9yIG9mIHRoZSByZWdyZXNzaW9uIGxpbmU6DQpnZ3Bsb3QoV0hPLCBhZXMoeCA9IGxvZyhGZXJ0aWxpdHlSYXRlKSwgeSA9IFVuZGVyMTUpKSArIA0KICBnZW9tX3BvaW50KCkgKyBzdGF0X3Ntb290aChtZXRob2QgPSAibG0iLCBjb2xvdXIgPSAib3JhbmdlIikNCmBgYA0KDQojIyMjIyA3LjEuNyDliIbnvqTpu57ni4DlnJYNCmBgYHtyfQ0KIyBxdWl6LTE6DQpnZ3Bsb3QoV0hPLCBhZXMoeCA9IEZlcnRpbGl0eVJhdGUsIHkgPSBVbmRlcjE1LCBjb2w9UmVnaW9uKSkgKyANCiAgc2NhbGVfY29sb3JfYnJld2VyKHBhbGV0dGU9IkFjY2VudCIpICsNCiAgZ2VvbV9wb2ludCgpDQoj6bue6IiH6bue5LmL6ZaT55qE6Zec5L+C77yM5piv5ZCm5ZugZmFjdG9y6ICM5pyJ5omA5LiN5ZCMDQpgYGANCg0KIyMjIyMgNy4xLjgg5YiG5qC86bue54uA5ZyWDQpgYGB7cn0NCiMgcXVpei0xOg0KZ2dwbG90KFdITywgYWVzKHggPSBsb2coUG9wdWxhdGlvbiksIHkgPSBHTkksIGNvbG9yPVJlZ2lvbikpICsgDQogIGdlb21fcG9pbnQoKSArIA0KICBzdGF0X3Ntb290aChtZXRob2Q9J2xtJykgKw0KICBmYWNldF93cmFwKH5SZWdpb24pICsgdGhlbWVfYncoKQ0KI2ZhY2V0X3dyYXDlj6/ku6XliIbpnaINCmBgYA0KDQo8YnI+DQoNCi0gLSAtDQoNCjxicj48YnI+PGJyPjxicj48YnI+DQoNCjxzdHlsZT4NCi5jYXB0aW9uIHsNCiAgY29sb3I6ICM3Nzc7DQogIG1hcmdpbi10b3A6IDEwcHg7DQp9DQpwIGNvZGUgew0KICB3aGl0ZS1zcGFjZTogaW5oZXJpdDsNCn0NCnByZSB7DQogIHdvcmQtYnJlYWs6IG5vcm1hbDsNCiAgd29yZC13cmFwOiBub3JtYWw7DQogIGxpbmUtaGVpZ2h0OiAxOw0KfQ0KcHJlIGNvZGUgew0KICB3aGl0ZS1zcGFjZTogaW5oZXJpdDsNCn0NCnAsbGkgew0KICBmb250LWZhbWlseTogIlRyZWJ1Y2hldCBNUyIsICLlvq7ou5/mraPpu5Hpq5QiLCAiTWljcm9zb2Z0IEpoZW5nSGVpIjsNCn0NCg0KLnJ7DQogIGxpbmUtaGVpZ2h0OiAxLjI7DQp9DQoNCnRpdGxlew0KICBjb2xvcjogI2NjMDAwMDsNCiAgZm9udC1mYW1pbHk6ICJUcmVidWNoZXQgTVMiLCAi5b6u6Luf5q2j6buR6auUIiwgIk1pY3Jvc29mdCBKaGVuZ0hlaSI7DQp9DQoNCmJvZHl7DQogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOw0KfQ0KDQpoMSxoMixoMyxoNCxoNXsNCiAgY29sb3I6ICMwMDg4MDA7DQogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOw0KfQ0KDQpoM3sNCiAgY29sb3I6ICNiMzZiMDA7DQogIGJhY2tncm91bmQ6ICNmZmUwYjM7DQogIGxpbmUtaGVpZ2h0OiAyOw0KICBmb250LXdlaWdodDogYm9sZDsNCn0NCg0KaDV7DQogIGNvbG9yOiAjMDA2MDAwOw0KICBiYWNrZ3JvdW5kOiAjZmZmZmUwOw0KICBsaW5lLWhlaWdodDogMjsNCiAgZm9udC13ZWlnaHQ6IGJvbGQ7DQp9DQoNCmVtew0KICBjb2xvcjogIzAwMDBjMDsNCiAgYmFja2dyb3VuZDogI2YwZjBmMDsNCiAgfQ0KPC9zdHlsZT4NCg0K