---
title: "Apple Watch Steps Tracker"
author: "Pulkit Seth"
date: "`r Sys.Date()`"
output:
flexdashboard::flex_dashboard:
orientation: rows
source_code: embed
vertical_layout: scroll
---
```{r setup, include=FALSE}
library(flexdashboard)
library(ggplot2)
library(plotly)
library(plyr)
```
## Row 1 {data-height=150}
### Average Number of Steps
```{r}
gauge(2575.78, min = 0, max = 10000, gaugeSectors(
success = c(2000, 10000), danger = c(0, 1999)
))
```
### Average Number of Miles
```{r}
gauge(1.69, min = 0, max = 5, gaugeSectors(
success = c(3, 5), warning = c(1.5,3), danger = c(0,1.5)
))
```
## Row 2 {data-height=350}
-----------------------------------------------------------------------
### Distance, Steps and Flights climbed from January 2017
```{r}
library(readxl)
FitnessTracker_Miles <- read_excel("D:/Google Drive Sync/Harrisburg University/CourseWork/Trimester 3/Data Visualization/Final individual project/FitnessTracker_Miles.xlsx")
library(dygraphs)
dygraph(FitnessTracker_Miles) %>%
dyOptions(stackedGraph = TRUE) %>%
dyRangeSelector(height = 20)%>%
dySeries(fillGraph = TRUE, color = "red")
```
## Row 3 {data-height=350}
-----------------------------------------------------------------------
### Weather affecting number of steps
```{r}
library(readxl)
Seasons <- read_excel("D:/Google Drive Sync/Harrisburg University/CourseWork/Trimester 3/Data Visualization/Final individual project/Seasons.xlsx")
library(ColorPalette)
data3 <- data.frame(Seasons$Month,Seasons$Total_Steps)
pal <- c("blue", "yellow")
Seasons_Steps <- plot_ly(Seasons, x = ~Month, y = ~Total_Steps, color = ~Month, colors = "Set1" , name = 'Affect of Seasons on Steps', type = 'bar')%>%
layout(
xaxis = list(title = "Month for year 2017"),
yaxis = list(title = "Number of Steps"),
barmode='relative'
)
Seasons_Steps
```
### Steps during stay in Cleveland
```{r}
library(readxl)
FitnessTrackerCle <- read_excel("D:/Google Drive Sync/Harrisburg University/CourseWork/Trimester 3/Data Visualization/Final individual project/FitnessTrackerCle.xlsx")
data <- data.frame(FitnessTrackerCle$Date, FitnessTrackerCle$Steps, FitnessTrackerCle$distance)
q <- plot_ly(FitnessTrackerCle, x = ~Date, y = ~Steps, name = 'Cleveland', type = 'scatter', mode="lines", color="red") %>%
layout(
xaxis = list(title = "Date"),
yaxis = list(title = "Number of Steps")
)
q
```
### Steps during stay in Washington DC
```{r}
library(readxl)
FitnessTrackerDC <- read_excel("D:/Google Drive Sync/Harrisburg University/CourseWork/Trimester 3/Data Visualization/Final individual project/FitnessTrackerDC.xlsx")
data1 <- data.frame(FitnessTrackerDC$Dates, FitnessTrackerDC$Steps, FitnessTrackerDC$Distance)
Washington_DC <- plot_ly(FitnessTrackerDC, x = ~Dates, y = ~Steps, name = 'Washington DC', type = 'scatter', mode = 'lines')%>%
layout(
xaxis = list(title = "Date"),
yaxis = list(title = "Number of Steps")
)
Washington_DC
```
## Row 4 {data-height=350}
-----------------------------------------------------------------------
### Total Days vs Steps (Cle)
```{r}
par(mfrow=c(1,2))
library(readxl)
FitnessTrackerCle <- read_excel("D:/Google Drive Sync/Harrisburg University/CourseWork/Trimester 3/Data Visualization/Final individual project/FitnessTrackerCle.xlsx")
data <- data.frame(FitnessTrackerCle$Date, FitnessTrackerCle$Steps, FitnessTrackerCle$distance)
Cle <- plot_ly(FitnessTrackerCle, x = ~Date, y = ~Steps, name = 'Cleveland', type = 'histogram', color="red") %>%
layout(
xaxis = list(title = "Total days"),
yaxis = list(title = "Number of Steps")
)
Cle
```
### Total Days vs Steps (DC)
```{r}
library(readxl)
FitnessTrackerDC <- read_excel("D:/Google Drive Sync/Harrisburg University/CourseWork/Trimester 3/Data Visualization/Final individual project/FitnessTrackerDC.xlsx")
data1 <- data.frame(FitnessTrackerDC$Dates, FitnessTrackerDC$Steps, FitnessTrackerDC$Distance)
DC <- plot_ly(FitnessTrackerDC, x = ~Dates, y = ~Steps, name = 'Washington DC', type = 'histogram')%>%
layout(
xaxis = list(title = "Total days"),
yaxis = list(title = "Number of Steps")
)
DC
```