Row 1

Average Number of Steps

Average Number of Miles

## Row 2

Distance, Steps and Flights climbed from January 2017

## Row 3

Weather affecting number of steps

Steps during stay in Cleveland

Steps during stay in Washington DC

## Row 4

Total Days vs Steps (Cle)

Total Days vs Steps (DC)

---
title: "Apple Watch Steps Tracker"
author: "Pulkit Seth"
date: "`r Sys.Date()`"
output:
  flexdashboard::flex_dashboard:
    orientation: rows
    source_code: embed
    vertical_layout: scroll
---

```{r setup, include=FALSE}
library(flexdashboard)
library(ggplot2)
library(plotly)
library(plyr)
```

## Row 1 {data-height=150}

### Average Number of Steps

```{r}
gauge(2575.78, min = 0, max = 10000, gaugeSectors(
  success = c(2000, 10000), danger = c(0, 1999)
)) 
```

### Average Number of Miles

```{r}

gauge(1.69, min = 0, max = 5, gaugeSectors(
  success = c(3, 5), warning = c(1.5,3), danger = c(0,1.5)
)) 
```

## Row 2 {data-height=350}
-----------------------------------------------------------------------

### Distance, Steps and Flights climbed from January 2017

```{r}
library(readxl)
FitnessTracker_Miles <- read_excel("D:/Google Drive Sync/Harrisburg University/CourseWork/Trimester 3/Data Visualization/Final individual project/FitnessTracker_Miles.xlsx")
library(dygraphs)

dygraph(FitnessTracker_Miles) %>%
  dyOptions(stackedGraph = TRUE) %>%
  dyRangeSelector(height = 20)%>%
  dySeries(fillGraph = TRUE, color = "red")

```


## Row 3 {data-height=350}
-----------------------------------------------------------------------

### Weather affecting number of steps

```{r}

library(readxl)
Seasons <- read_excel("D:/Google Drive Sync/Harrisburg University/CourseWork/Trimester 3/Data Visualization/Final individual project/Seasons.xlsx")

library(ColorPalette)
data3 <- data.frame(Seasons$Month,Seasons$Total_Steps) 
pal <- c("blue", "yellow")
Seasons_Steps <- plot_ly(Seasons, x = ~Month, y = ~Total_Steps, color = ~Month, colors = "Set1" , name = 'Affect of Seasons on Steps', type = 'bar')%>%
  layout(
    xaxis = list(title = "Month for year 2017"),
    yaxis = list(title = "Number of Steps"),
    barmode='relative'
  )
  
Seasons_Steps

```

### Steps during stay in Cleveland

```{r}
library(readxl)
FitnessTrackerCle <- read_excel("D:/Google Drive Sync/Harrisburg University/CourseWork/Trimester 3/Data Visualization/Final individual project/FitnessTrackerCle.xlsx")

data <- data.frame(FitnessTrackerCle$Date, FitnessTrackerCle$Steps, FitnessTrackerCle$distance) 

q <- plot_ly(FitnessTrackerCle, x = ~Date, y = ~Steps, name = 'Cleveland', type = 'scatter', mode="lines", color="red") %>%
  layout(
    xaxis = list(title = "Date"),
    yaxis = list(title = "Number of Steps")
  )
q

```


### Steps during stay in Washington DC

```{r}
library(readxl)
FitnessTrackerDC <- read_excel("D:/Google Drive Sync/Harrisburg University/CourseWork/Trimester 3/Data Visualization/Final individual project/FitnessTrackerDC.xlsx")

data1 <- data.frame(FitnessTrackerDC$Dates, FitnessTrackerDC$Steps, FitnessTrackerDC$Distance) 

Washington_DC <- plot_ly(FitnessTrackerDC, x = ~Dates, y = ~Steps, name = 'Washington DC', type = 'scatter', mode = 'lines')%>%
  layout(
    xaxis = list(title = "Date"),
    yaxis = list(title = "Number of Steps")
  )
  
Washington_DC
```

## Row 4 {data-height=350}
-----------------------------------------------------------------------

### Total Days vs Steps (Cle)

```{r}
par(mfrow=c(1,2))
library(readxl)
FitnessTrackerCle <- read_excel("D:/Google Drive Sync/Harrisburg University/CourseWork/Trimester 3/Data Visualization/Final individual project/FitnessTrackerCle.xlsx")

data <- data.frame(FitnessTrackerCle$Date, FitnessTrackerCle$Steps, FitnessTrackerCle$distance) 
Cle <- plot_ly(FitnessTrackerCle, x = ~Date, y = ~Steps, name = 'Cleveland', type = 'histogram', color="red") %>%
  layout(
    xaxis = list(title = "Total days"),
    yaxis = list(title = "Number of Steps")
  )
Cle

```

### Total Days vs Steps (DC)

```{r}
library(readxl)
FitnessTrackerDC <- read_excel("D:/Google Drive Sync/Harrisburg University/CourseWork/Trimester 3/Data Visualization/Final individual project/FitnessTrackerDC.xlsx")

data1 <- data.frame(FitnessTrackerDC$Dates, FitnessTrackerDC$Steps, FitnessTrackerDC$Distance) 

DC <- plot_ly(FitnessTrackerDC, x = ~Dates, y = ~Steps, name = 'Washington DC', type = 'histogram')%>%
  layout(
    xaxis = list(title = "Total days"),
    yaxis = list(title = "Number of Steps")
  )
  
DC
```