Ausrine
1 August 2018
Hello, this presentation is part of the final project of the Developing Data Products course as part of the Coursera Data Science specialization. Please enjoy.
The Shiny application discussed in this presentation is located here: https://ninja555.shinyapps.io/Project3/
The Shiny Application shows a linear regression between the various variables found in the 3 datasets analysed.
Follow these 3 steps to generate the linear regression graph:
Datasets used are: Iris, Mtcars and Trees
library(datasets)
data(iris)
head(iris, 4)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
Datasets used are: Iris, Mtcars and Trees
library(datasets)
data(mtcars)
head(mtcars, 4)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Datasets used are: Iris, Mtcars and Trees
library(datasets)
data(trees)
head(mtcars, 4)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1