W. Q. Meeker, L. A. Escobar, and J. K. Freels
30 July 2018
Likelihood methods for fitting log-location-scale distributions (especially the Weibull and lognormal distributions)
Likelihood confidence intervals/regions for model parameters and for functions of model parameters
Normal-approximation confidence intervals/regions
Estimation and confidence intervals for log-location-scale distributions with a given shape parameter
Distributions with two parameters
Based on location-scale distributions
These methods can be applied to any distribution in the location-scale family
Particular attention is paid to the Weibull and lognormal distributions
For exact failure times the density approximation to the likelihood (Eq 7.13) is adequate
\[ \begin{aligned} \mathcal{L}(\mu,\sigma|\underline{t})&=\prod_{i=1}^n\left[f(t_i|\mu,\sigma)\right]^{\delta_{i}}\left[1-F(t_i|\mu,\sigma)\right]^{1-\delta_i}\\\\ &=\prod_{i=1}^n\left[\frac{1}{\sigma}\phi\left(\frac{t_i-\mu}{\sigma}\right)\right]^{\delta_i}\times\left[1-\Phi\left(\frac{t_i-\mu}{\sigma}\right)\right]^{1-\delta_i} \end{aligned} \]
\[ \delta_i=\begin{cases}1 &\mbox{for an exact observation}\\\\ 0 &\mbox{for a right-censored observation}\end{cases} \]
\[ \begin{aligned} \mathcal{L}(\mu,\sigma|\underline{t})&=\prod_{i=1}^n\left[f(\log(t_i)|\mu,\sigma)\right]^{\delta_{i}}\left[1-F(\log(t_i)|\mu,\sigma)\right]^{1-\delta_i}\\\\ &=\prod_{i=1}^n\left[\frac{1}{t_i\sigma}\phi\left(\frac{\log(t_i)-\mu}{\sigma}\right)\right]^{\delta_i}\times\left[1-\Phi\left(\frac{\log(t_i)-\mu}{\sigma}\right)\right]^{1-\delta_i} \end{aligned} \]
\[ \delta_i=\begin{cases}1 &\mbox{for exact observations}\\\\ 0 &\mbox{for right-censored observations}\end{cases} \]
\[ R(\theta) \ge \exp\left[-\chi^2_{(1-\alpha;1)}/2\right] \]
A plot of a likelihood-based confidence interval for a single parameter depicts \(R(\theta)\) for a range of \(\theta\) values
The shiny app below shows a likelihood-based confidence interval plot for the exponential parameter \(\theta\) using the berkson200 data set
For two unknown parameters (i.e. \(\overline{\theta}=\theta_1,\theta_2\)) an approximate \(100(1-\alpha)\%\)
\[ R(\theta_1, \theta_2) \ge \exp\left[-\chi^2_{(1-\alpha;2)}/2\right] \]
par(mfrow = c(1,2), las = 1)
library(SMRD)
zoom <- 1.5
threeD <- F
Shock.ld <-
frame.to.ld(shockabsorber,
response.column = 1,
censor.column = 3,
time.units = 'Kilometers')
simple.contour(Shock.ld,
distribution = 'weibull',
show.confidence = T,
zoom.level = zoom,
original.par = F,
threeD = threeD)
simple.contour(Shock.ld,
distribution = 'weibull',
show.confidence = F,
zoom.level = zoom,
threeD = threeD)Estimate \(\hat{\mu}_{_{MLE}}\;\text{and}\;\hat{\sigma}_{_{MLE}}\)
Select a value \(\mu_0\)
For the selected value of \(\mu_0\), numerically find the value of \(\sigma\) that maximizes the relative likelihood, i.e.
\[ R(\mu_0)=\max_{\sigma}\left[\frac{\mathcal{L}(\mu_0,\sigma)}{\mathcal{L}(\hat{\mu}_{_{MLE}},\hat{\sigma}_{_{MLE}})}\right] \]
Estimate \(\hat{\mu}_{_{MLE}}\;\text{and}\;\hat{\sigma}_{_{MLE}}\)
Select a value \(\sigma_0\)
For the selected value of \(\sigma_0\), numerically find the value of \(\mu\) that maximizes the relative likelihood, i.e.
\[ R(\sigma_0)=\max_{\mu}\left[\frac{\mathcal{L}(\mu,\sigma_0)}{\mathcal{L}(\hat{\mu}_{_{MLE}},\hat{\sigma}_{_{MLE}})}\right] \]
par(mfrow = c(1,2), las = 1)
library(SMRD)
Shock.ld <-
frame.to.ld(shockabsorber,
response.column = 1,
censor.column = 3,
time.units = 'Kilometers')
simple.contour(Shock.ld,
distribution = 'weibull',
profile = 'x',
size = 300,
print.ci = F)
simple.contour(Shock.ld,
distribution = 'weibull',
profile = 'y',
size = 300,
print.ci = F)Confidence intervals may be computed for functions of \(\mu\) and/or \(\sigma\)
Define a \(1-1\) transformation \(\mathbf{g[\mu,\sigma]}=[g_1(\mu,\sigma),g_2(\mu,\sigma)],\) where \(g_1\;\text{or}\;g_2\) is the function of interest
Due to the invariance properties of MLE’s, likelihood-based CI methods can be applied as was described for the parameters
\[ R(t_p)=\max_{\sigma}\left[\frac{\mathcal{L}(f(\mu),\sigma)}{\mathcal{L}(\hat{\mu}_{_{MLE}},\hat{\sigma}_{_{MLE}})}\right] \]
\[ \mu = \log(t_p)-\Phi^{-1}(p)\sigma \]
\[ R(t_p)=\max_{\sigma}\left[\frac{\mathcal{L}\left[\log(t_p)-\Phi^{-1}(p)\sigma,\sigma\right]}{\mathcal{L}(\hat{\mu}_{_{MLE}},\hat{\sigma}_{_{MLE}})}\right] \]
Therefore, to find the likelihood-based confidence interval for \(t_p\)
Choose a value for \(\mu_0\) and find \(R(\mu_0)\) for each value of \(\sigma\)
Choose a quantile value \(p\), we know that \(R(\mu_0) = R(t_{p_{0}})\)
Record and plot \((t_{p_{0}},R(t_{p_{0}}))\) to get the likelihood profile for \(t_p\)
par(mfrow = c(1,2), las = 1)
library(SMRD)
Shock.ld <-
frame.to.ld(shockabsorber,
response.column = 1,
censor.column = 3,
time.units = 'Kilometers')
simple.contour(Shock.ld,
distribution = 'weibull',
quantile = 0.1,
size = 300,
zoom.level = 2.25,
show.confidence = F,
original.par = F)
simple.contour(Shock.ld,
distribution = 'weibull',
quantile = 0.1,
profile = 'x',
size = 300)\[ \mu = \log(t_e)-\Phi^{-1}\left(F(t_e)\right)\sigma \]
\[ R\left(F(t_e)\right)=\max_{\sigma}\left[\frac{\mathcal{L}\left[\log(t_e)-\Phi^{-1}\left(F(t_e)\right)\sigma,\sigma\right]}{\mathcal{L}(\hat{\mu}_{_{MLE}},\hat{\sigma}_{_{MLE}})}\right] \]
To find the likelihood-based CI for \(F(t_e)\)
Choose a value for \(\mu_0\) and find \(R(\mu_0)\) for each value of \(\sigma\)
For the time of interest \(t_e\), we know that \(R(\mu_0) = R\left(F(t_{e_{0}})\right)\)
Record and plot \(\left(F(t_{e_{0}}),R\left(F(t_{e_{0}})\right)\right)\) to get the likelihood profile for \(F(t_e)\)
par(family = 'serif', mfrow = c(1,2), las = 1, cex = 1.25)
library(SMRD)
ShockAbsorber.ld <-
frame.to.ld(SMRD::shockabsorber,
response.column = 1,
censor.column = 3,
time.units = 'Kilometers')
simple.contour(ShockAbsorber.ld,
distribution = 'weibull',
quantile = 0.1,
size = 300,
zoom = 2.25,
rel.or.conf = 'Relative likelihood',
original.par = F)
simple.contour(ShockAbsorber.ld,
distribution = 'weibull',
quantile = 0.1,
profile = 'x',
size = 300)\[ \mathbf{\widehat{\Sigma}_{\hat{\mu},\hat{\sigma}}} = \left[ \begin{array}{cc} \widehat{Var}(\hat{\mu}) & \widehat{Cov}(\hat{\mu},\hat{\sigma}) \\ \widehat{Cov}(\hat{\mu},\hat{\sigma}) & \widehat{Var}(\hat{\sigma}) \\ \end{array} \right]=\left[ \begin{array}{cc} -\frac{\partial^2\mathcal{L}}{\partial\mu^2} & -\frac{\partial^2\mathcal{L}}{\partial\mu\partial\sigma} \\ -\frac{\partial^2\mathcal{L}}{\partial\sigma\partial\mu} & -\frac{\partial^2\mathcal{L}}{\partial\sigma^2} \\ \end{array} \right]^{-1} \]
As was discussed in Chapter 7, \(\mathbf{\widehat{\Sigma}_{\hat{\mu},\hat{\sigma}}}\) describes the curvature of \(\mathcal{L}\) at \(\hat{\mu},\hat{\sigma}\)
A higher degree of curvature implies a more concentrated likelihood near \(\hat{\mu},\hat{\sigma}\) and thereby greater precision.
We can create a list of several important maximum likelihood estimate properties using the mlest function
The mlest function requires that we provide
A life data object
A distribution for which we want the ML properties
shock.ld <- frame.to.ld(shockabsorber,
response.column = 1,
censor.column = 3)
shock.mlest <- mlest(shock.ld,
distribution = "weibull") mu sigma
mu 0.0120759 0.0039904
sigma 0.0039904 0.0053532
| mu | sigma | |
|---|---|---|
| mu | 0.012076 | 0.003990 |
| sigma | 0.003990 | 0.005353 |
| mu | sigma | |
|---|---|---|
| mu | 1.0 | 0.49631 |
| sigma | 0.5 | 1.00000 |
\[ Z_{\hat{\mu}}=\frac{\hat{\mu}-\mu}{\widehat{se}_{\hat{\mu}}}\sim NOR(0,1) \]
\[ Z_{\log(\hat{\sigma})}=\frac{\log(\hat{\sigma})-\log(\sigma)}{\widehat{se}_{\log(\hat{\sigma})}}\sim NOR(0,1) \]
Where the \(\log(\hat{\sigma})\) transformation is made to improve the coverage probability of the CI since \(\sigma\) is a
Therefore a \(100(1-\alpha)\%\) 2-sided CI for \(\mu\) is expressed as
\[ \left[\underline{\mu},\overline{\mu}\right]=\hat{\mu}\pm z_{(1-\alpha/2)}\widehat{se}_{\hat{\mu}} \]
\[ \left[\underline{\sigma},\overline{\sigma}\right]=[\hat{\sigma}/w, \hat{\sigma}\times w] \]
\[ w = \exp[z_{(1-\alpha/2)}\widehat{se}_{\hat{\sigma}}/\hat{\sigma}] \]
\[ Z_{\hat{g}_1}=\frac{\hat{g}_1-g_1}{\widehat{se}_{\hat{g}_1}}\sim NOR(0,1) \]
\[ \left[\underline{g_1}, \overline{g_1}\right]=\hat{g_1}\pm z_{(1-\alpha/2)}\widehat{se}_{\hat{g_1}} \]
\[ \begin{aligned} \widehat{se}_{\hat{g}_1}&=\sqrt{\widehat{Var}(\hat{g}_1)}\\ &=\left[\left(\frac{\partial g_1}{\partial\mu}\right)^2\widehat{Var}(\hat{\mu})+2\left(\frac{\partial g_1}{\partial\mu}\right)\left(\frac{\partial g_1}{\partial\sigma}\right)\widehat{Cov}(\hat{\mu},\hat{\sigma})+\left(\frac{\partial g_1}{\partial\sigma}\right)^2\widehat{Var}(\hat{\sigma})\right]^{1/2} \end{aligned} \]
\[ \left[\underline{\eta},\overline{\eta}\right]=\left[\exp(\underline{\mu}),\exp(\overline{\mu})\right] \]
\[ \left[\underline{t}_p,\overline{t}_p\right]=\left[\hat{t}_p/w,\hat{t}_p\times w\right] \]
\[ \begin{aligned} \widehat{se}_{\hat{t}_p}&=\sqrt{\widehat{Var}(\hat{t}_p)}=\sqrt{\hat{t}_p^2\widehat{Var}[\log(\hat{t}_p)]}\\ &=\hat{t}_p\left[\widehat{Var}(\hat{\mu})+2\Phi^{-1}(p)\widehat{Cov}(\hat{\mu},\hat{\sigma})+[\Phi^{-1}(p)]^2\widehat{Var}(\hat{\sigma})\right]^{1/2} \end{aligned} \]
Define \(t_e\) as a time at which an estimate of the failure probability \(F(t)\) is desired
An approximate \(100(1-\alpha)\%\) CI for \(\hat{F}(t_e)\) based on \(Z_{\hat{F}}=\frac{\hat{F}(t_e)-F(t_e)}{\widehat{se}_{\hat{F}}}\sim NOR(0,1)\)
\[ \left[\underline{F}(t_e),\overline{F}(t_e)\right]=\hat{F}(t_e)\pm z_{(1-\alpha/2)}\widehat{se}_{\hat{F}} \]
\[ \widehat{se}_{\hat{F}}=\frac{\phi(\hat{\zeta}_e)}{\hat{\sigma}}\left[\widehat{Var}(\hat{\mu})+2\hat{\zeta}_e\widehat{Cov}(\hat{\mu},\hat{\sigma})+\hat{\zeta}_e^2\widehat{Var}(\hat{\sigma})\right]^{1/2} \]
\[ \hat{\zeta}_{e}=[\log(t_e)-\hat{\mu}_{_{MLE}}]/\hat{\sigma}_{_{MLE}} \]
As discussed in Chapter 3, assuming \(Z_{\hat{F}}=\frac{\hat{F}(t_e)-F(t_e)}{\widehat{se}_{\hat{F}}}\sim NOR(0,1)\) can result in a CI \(\notin (0,1)\) for small sample sizes
To improve the coverage probability the following transformation was made
\[ \text{logit}[F(t_e|\hat{\mu},\hat{\sigma})]=\log\left[\frac{F(t_e|\hat{\mu},\hat{\sigma})}{1-F(t_e|\hat{\mu},\hat{\sigma})}\right] \]
\[ Z_{\text{logit}[\hat{F}]}=\frac{\text{logit}[\hat{F}(t_e)]-\text{logit}[F(t_e)]}{\widehat{se}_{\text{logit}[\hat{F}]}}\sim NOR(0,1) \]
\[ \left[\underline{F}(t_e),\overline{F}(t_e)\right]=\left[\frac{\hat{F}}{\hat{F}+(1-\hat{F})\times w}, \frac{\hat{F}}{\hat{F}+(1-\hat{F})/w}\right] \]
\[ w=\exp\left[\frac{z_{(1-\alpha/2)}\widehat{se}_{\hat{F}}}{\hat{F}(1-\hat{F})}\right] \]
\[ \begin{array}{rrrrr} \hline miles & Fhat & Std.Err. & 95\% Lower & 95\% Upper \\ \hline 6000 & 0.0079 & 0.0078 & 0.0011 & 0.0540 \\ 8000 & 0.0195 & 0.0154 & 0.0041 & 0.0893 \\ 10000 & 0.0391 & 0.0248 & 0.0112 & 0.1322 \\ 12000 & 0.0685 & 0.0352 & 0.0246 & 0.1826 \\ 14000 & 0.1091 & 0.0457 & 0.0471 & 0.2412 \\ 16000 & 0.1615 & 0.0559 & 0.0804 & 0.3092 \\ 18000 & 0.2255 & 0.0660 & 0.1244 & 0.3883 \\ 20000 & 0.2999 & 0.0770 & 0.1769 & 0.4794 \\ 22000 & 0.3823 & 0.0897 & 0.2342 & 0.5810 \\ 24000 & 0.4697 & 0.1039 & 0.2926 & 0.6871 \\ 26000 & 0.5582 & 0.1179 & 0.3499 & 0.7876 \\ 28000 & 0.6439 & 0.1291 & 0.4048 & 0.8718 \\ 30000 & 0.7231 & 0.1349 & 0.4569 & 0.9328 \\ \hline \end{array} \]
\[ \begin{array}{rrrrr} \hline Time & Hazard & StdError & 95\% lower & 95\% upper \\ \hline 6000 & 0.0000042 & 0.0000032 & 0.0000009 & 0.0000191 \\ 8000 & 0.0000078 & 0.0000046 & 0.0000025 & 0.0000246 \\ 10000 & 0.0000126 & 0.0000057 & 0.0000052 & 0.0000308 \\ 12000 & 0.0000187 & 0.0000068 & 0.0000091 & 0.0000383 \\ 14000 & 0.0000261 & 0.0000082 & 0.0000140 & 0.0000485 \\ 16000 & 0.0000348 & 0.0000105 & 0.0000193 & 0.0000628 \\ 18000 & 0.0000449 & 0.0000141 & 0.0000242 & 0.0000830 \\ 20000 & 0.0000563 & 0.0000194 & 0.0000287 & 0.0001105 \\ 22000 & 0.0000692 & 0.0000264 & 0.0000327 & 0.0001464 \\ 24000 & 0.0000835 & 0.0000354 & 0.0000364 & 0.0001918 \\ 26000 & 0.0000993 & 0.0000464 & 0.0000397 & 0.0002481 \\ 28000 & 0.0001165 & 0.0000594 & 0.0000429 & 0.0003165 \\ 30000 & 0.0001353 & 0.0000746 & 0.0000459 & 0.0003984 \\ \hline \end{array} \]