library(vcdExtra)
## Loading required package: vcd
## Loading required package: grid
## Loading required package: gnm
data("Caesar",package="vcdExtra")
Caesar.df <- as.data.frame(Caesar)
Caesar.df$Infect <- as.numeric(Caesar.df$Infection %in% c("Type 1", "Type 2"))
Caesar.df$Risk <- factor(Caesar.df$Risk, levels(Caesar.df$Risk)[c(2,1)])
Caesar.df$Antibiotics <- factor(Caesar.df$Antibiotics, levels(Caesar.df$Antibiotics)[c(2,1)])
Caesar.df$Planned <- factor(Caesar.df$Planned, levels(Caesar.df$Planned)[c(2,1)])
model <- glm(Infect ~ Risk + Antibiotics + Planned, family = binomial, data = Caesar.df, weights = Freq)
summary(model)
##
## Call:
## glm(formula = Infect ~ Risk + Antibiotics + Planned, family = binomial,
## data = Caesar.df, weights = Freq)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6.7471 -0.4426 0.0000 3.2338 5.4201
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7935 0.4785 -1.658 0.0972 .
## RiskYes 1.8270 0.4364 4.186 2.84e-05 ***
## AntibioticsYes -3.0011 0.4593 -6.535 6.37e-11 ***
## PlannedYes -0.9064 0.4084 -2.219 0.0265 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 300.85 on 16 degrees of freedom
## Residual deviance: 236.36 on 13 degrees of freedom
## AIC: 244.36
##
## Number of Fisher Scoring iterations: 6
anova(model)
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: Infect
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev
## NULL 16 300.85
## Risk 1 4.104 15 296.75
## Antibiotics 1 55.163 14 241.59
## Planned 1 5.230 13 236.36
effect <- exp(coef(model)) - 1
effect.perc <- paste(round(100*effect, 2), "%", sep="")
effect.perc.abs <- paste(round(100*abs(effect), 2), "%", sep="")
effect.perc
## [1] "-54.77%" "521.52%" "-95.03%" "-59.6%"
The odds of infection decreases by 95% when antibiotics is used and decreases by 60% when C-section is planned.
library(effects)
## Loading required package: carData
##
## Attaching package: 'carData'
## The following object is masked from 'package:vcdExtra':
##
## Burt
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
Caesar.effect <- allEffects(model)
plot(Caesar.effect)
model2 <- update(model, . ~ . + Antibiotics:Planned)
plot(allEffects(model2))