\(P(Y1 = y1, Y2 = y2) = e^{-(\lambda x_{1}+\lambda x_{2}+\lambda x_{3})} \displaystyle\frac{\lambda x_{1}^{y1}}{y1!}\frac{\lambda x_{2}^{y2}}{y2!} \sum_{i=0}^{min(y1,y2)}\binom{y1}{i}\binom{y2}{i}i!\left(\frac{\lambda x_{3}}{\lambda x_{1}\lambda x_{2}}\right)^{i}\)
X1, X2 and X3 are independent Poisson variables with parameters: \(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}\)
E(Y1)=\(\lambda x_{1}+\lambda x_{3}\)
E(Y2)=\(\lambda x_{2}+\lambda x_{3}\)
covariância(Y1,Y2) = \(\lambda x_{3}\)
correlação (Y1,Y2) = \(\lambda x_{3} / \sqrt{\lambda x_{1}+\lambda x_{3})(\lambda x_{2}+\lambda x_{3})}\)
library(extraDistr)
dbvpois(7, 7, 1, 1, 1) # Probability mass function Pr(y1=7,y2=7, lamda_x1=1,lamda_x2=1,lamda_x3=1 )
[1] 0.0002566068
dbvpois(1:7, 1:7, 1, 1, 1) # Probability mass function Pr(y1=1 a 7,y2= 1 a 7, lamda_x1=1,lamda_x2=1,lamda_x3=1 )
[1] 0.0995741367 0.0871273696 0.0470211201 0.0180650995 0.0053451950 0.0012799233 0.0002566068
Vamos observar na simulação que a covariância(Y1,Y2) = \(\lambda x_{3}\)
Vamos observar na simulação que a correlação (Y1,Y2) = \(\lambda x_{3} / \sqrt{\lambda x_{1}+\lambda x_{3})(\lambda x_{2}+\lambda x_{3})}\)
\(\lambda x_{1}=1, \lambda x_{2}=1, \lambda x_{3}=1\)
x <- rbvpois(100000, 1, 1, 1) # Simula poisson bivariada -> lamda_x1=1,lamda_x2=1,lamda_x3=1
table(x[,1], x[,2]) # tabula os resultados
0 1 2 3 4 5 6 7 8 9 10 11
0 5034 4906 2539 848 201 40 5 0 0 0 0 0
1 5038 10021 7591 3313 1000 254 44 8 0 0 0 0
2 2415 7478 8681 5272 2079 642 162 35 7 0 0 0
3 775 3302 5358 4766 2512 892 241 62 11 3 0 1
4 209 1024 2212 2527 1839 903 309 98 10 1 0 0
5 48 249 656 942 839 570 218 77 19 5 2 0
6 14 49 142 267 304 224 135 52 28 5 0 0
7 3 9 28 48 113 80 62 24 12 3 0 0
8 1 0 3 14 12 24 21 10 3 2 0 0
9 0 0 0 2 1 2 1 1 3 1 0 0
10 0 0 0 1 0 0 1 1 1 0 0 0
round(prop.table(table(x[,1], x[,2])),3) # tabula a proporção dos resultados
0 1 2 3 4 5 6 7 8 9 10 11
0 0.050 0.049 0.025 0.008 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.050 0.100 0.076 0.033 0.010 0.003 0.000 0.000 0.000 0.000 0.000 0.000
2 0.024 0.075 0.087 0.053 0.021 0.006 0.002 0.000 0.000 0.000 0.000 0.000
3 0.008 0.033 0.054 0.048 0.025 0.009 0.002 0.001 0.000 0.000 0.000 0.000
4 0.002 0.010 0.022 0.025 0.018 0.009 0.003 0.001 0.000 0.000 0.000 0.000
5 0.000 0.002 0.007 0.009 0.008 0.006 0.002 0.001 0.000 0.000 0.000 0.000
6 0.000 0.000 0.001 0.003 0.003 0.002 0.001 0.001 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
colMeans(x) # médias
[1] 2.00086 1.99946
cov(x[,1], x[,2]) # covariância = lamda_x3=1
[1] 1.014821
cor(x[,1], x[,2]) #correlação = 1/raiz((1+1)x(1+1))
[1] 0.5046778
image(prop.table(table(x[,1], x[,2])))
\(\lambda x_{1}=2, \lambda x_{2}=2, \lambda x_{3}=0\)
y <- rbvpois(100000, 2, 2, 0) # Simula poisson bivariada -> lamda_x1=2,lamda_x2=2,lamda_x3=0
table(y[,1], y[,2]) # tabula os resultados
0 1 2 3 4 5 6 7 8 9 10
0 1868 3690 3702 2399 1194 510 165 52 11 4 0
1 3672 7333 7349 4947 2375 974 283 83 26 9 1
2 3660 7280 7460 4926 2414 953 309 91 30 8 1
3 2397 4767 4829 3277 1603 688 221 73 17 3 1
4 1201 2445 2514 1595 868 322 108 32 8 3 1
5 478 980 957 657 354 133 52 13 4 1 0
6 164 310 312 199 103 36 17 6 0 0 0
7 42 103 101 57 39 12 4 1 1 0 0
8 13 25 18 17 7 1 0 1 0 0 0
9 3 6 9 5 3 2 0 0 0 0 0
10 0 2 0 0 0 0 0 0 0 0 0
round(prop.table(table(y[,1], y[,2])),3) # tabula a proporção dos resultados
0 1 2 3 4 5 6 7 8 9 10
0 0.019 0.037 0.037 0.024 0.012 0.005 0.002 0.001 0.000 0.000 0.000
1 0.037 0.073 0.073 0.049 0.024 0.010 0.003 0.001 0.000 0.000 0.000
2 0.037 0.073 0.075 0.049 0.024 0.010 0.003 0.001 0.000 0.000 0.000
3 0.024 0.048 0.048 0.033 0.016 0.007 0.002 0.001 0.000 0.000 0.000
4 0.012 0.024 0.025 0.016 0.009 0.003 0.001 0.000 0.000 0.000 0.000
5 0.005 0.010 0.010 0.007 0.004 0.001 0.001 0.000 0.000 0.000 0.000
6 0.002 0.003 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
colMeans(x) # médias
[1] 2.00086 1.99946
cov(y[,1], y[,2]) # covariância = lamda_x3=1
[1] 0.01368324
cor(y[,1], y[,2]) #correlação = 1/raiz((1+1)x(1+1))
[1] 0.006838898
image(prop.table(table(y[,1], y[,2])))