## Results from MAXQDA coding have been exported into an excel sheet and each analysis collated into one
## database 'NEW' from which the following exploratory analysis is conducted

setwd("C:\\Users\\Rhonda\\Desktop\\CC\\Thesis\\Analysis\\Results") # laptop
library(xtable)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.4.4
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(RColorBrewer)
Data <- read.csv("NEW.csv")

## Labels for newspaper name
PaperLabel <- c('Farmers Journal', 'Irish Times', 'Independent', 'The Journal')  ## PaperName
Data$PaperName <- PaperLabel[Data$Paper]

## Labels for article tone
Data$Tone <- 'Neg'                                            ## Tone
Data$Tone[which(Data$Positive == 1)] <- 'Pos'
Data$Tone[which(Data$Neutral == 1)] <- 'Neu'

## labels for article period
PeriodLabel <- c("Before","During","After")                   ## Period
Data$PeriodName <- PeriodLabel[Data$Period]

## labels for article scale - reliance upon evidence
ScaleLabel <- c("None","Low","Medium", "High", "Very High")   ## Reliance upon evidence (scale)
Data$ScaleName <- ScaleLabel[Data$Scale]

### Separating time periods
Before <- Data[which(Data$PeriodName == 'Before'),]           ## Calls only the data relevant to March-May 2017
During <- Data[which(Data$PeriodName == 'During'),]           ## Calls only the data relevant to Sept-Nov (inclusive) 2017
After  <- Data[which(Data$PeriodName == 'After'),]            ## Calls only the data relevant to Dec 2017 - May 2018

### Separating media sources
FJ  <- Data[which(Data$PaperName == 'Farmers Journal'),]      ## Calls only the data relevant to the Farmers Journal
IT  <- Data[which(Data$PaperName == 'Irish Times'),]          ## Calls only the data relevant to the Irish Times
Ind <- Data[which(Data$PaperName == 'Independent'),]          ## Calls only the data relevant to the Irish Independent
TJ  <- Data[which(Data$PaperName == 'The Journal'),]          ## Calls only the data relevant to The Journal

## Action codes from variables
N <- nrow(Data)                                               ## Action coding
Data$ActionCode <- rep(NA,N)
for(i in 1:N) Data$ActionCode[i] <- paste(Data[i,4],Data[i,5],Data[i,6],Data[i,7],Data[i,8],
                                          Data[i,9],Data[i,10],Data[i,11],Data[i,12],Data[i,13],
                                          Data[i,14],Data[i,15],sep="")
cumsum((sort(table(Data$ActionCode),decreasing=T)))           ## Decreasing values by cumulative sum
## 000000000000 000010000000 000000001000 000000000100 000100000000 
##          292          348          402          447          491 
## 000000000001 000000100000 001000000000 100000000000 000000010000 
##          522          550          571          592          607 
## 000000000010 100000001000 000000110000 000000101000 000000001100 
##          617          626          633          639          644 
## 001000000100 110000000000 000000000011 000001000000 110000001000 
##          649          654          658          662          666 
## 000000000101 000000001001 000010001000 000100000100 000100100000 
##          669          672          675          678          681 
## 001000000001 001000100000 001100000000 010000000001 100000000001 
##          684          687          690          693          696 
## 100000001110 100000100000 000010100000 000100001000 010010000000 
##          699          702          704          706          708 
## 100000000010 110000000111 000000001010 000000001011 000000001111 
##          710          712          713          714          715 
## 000000010010 000000100001 000000100010 000000100100 000000101001 
##          716          717          718          719          720 
## 000001000100 000010000010 000010000011 000010000111 000100000001 
##          721          722          723          724          725 
## 000101000000 000110000000 001000001001 001000001101 001000001111 
##          726          727          728          729          730 
## 010000000000 010000000010 011000001111 100000000011 100000000100 
##          731          732          733          734          735 
## 100000000101 100000000110 100000000111 100000010000 100000011000 
##          736          737          738          739          740 
## 100000100100 100001000001 100100001000 100100100000 101000000000 
##          741          742          743          744          745 
## 110000000001 110000000010 
##          746          747
100*cumsum((sort(table(Data$ActionCode),decreasing=T)))/747   ## Decreasing percentage by cumulative sum
## 000000000000 000010000000 000000001000 000000000100 000100000000 
##     39.08969     46.58635     53.81526     59.83936     65.72959 
## 000000000001 000000100000 001000000000 100000000000 000000010000 
##     69.87952     73.62784     76.43909     79.25033     81.25837 
## 000000000010 100000001000 000000110000 000000101000 000000001100 
##     82.59705     83.80187     84.73896     85.54217     86.21151 
## 001000000100 110000000000 000000000011 000001000000 110000001000 
##     86.88086     87.55020     88.08568     88.62115     89.15663 
## 000000000101 000000001001 000010001000 000100000100 000100100000 
##     89.55823     89.95984     90.36145     90.76305     91.16466 
## 001000000001 001000100000 001100000000 010000000001 100000000001 
##     91.56627     91.96787     92.36948     92.77108     93.17269 
## 100000001110 100000100000 000010100000 000100001000 010010000000 
##     93.57430     93.97590     94.24364     94.51138     94.77912 
## 100000000010 110000000111 000000001010 000000001011 000000001111 
##     95.04685     95.31459     95.44846     95.58233     95.71620 
## 000000010010 000000100001 000000100010 000000100100 000000101001 
##     95.85007     95.98394     96.11780     96.25167     96.38554 
## 000001000100 000010000010 000010000011 000010000111 000100000001 
##     96.51941     96.65328     96.78715     96.92102     97.05489 
## 000101000000 000110000000 001000001001 001000001101 001000001111 
##     97.18876     97.32262     97.45649     97.59036     97.72423 
## 010000000000 010000000010 011000001111 100000000011 100000000100 
##     97.85810     97.99197     98.12584     98.25971     98.39357 
## 100000000101 100000000110 100000000111 100000010000 100000011000 
##     98.52744     98.66131     98.79518     98.92905     99.06292 
## 100000100100 100001000001 100100001000 100100100000 101000000000 
##     99.19679     99.33066     99.46452     99.59839     99.73226 
## 110000000001 110000000010 
##     99.86613    100.00000
CodeList <- names(sort(table(Data$ActionCode),decreasing=T))  ## Provides a code list, needs to be transformed from numbers to names
nCode <- length(CodeList)
ActionType <- rep("Mixed",nCode)                              ## Changing the code list from numbers to names
ActionType[1:11]  <- c("None","Other","Policy","Agriculture","Impacts","Energy",
                       "Communication","C.Assembly","Action","Arts","Transport")
ActionType[12:15] <- c("Mixed")
ActionType[16]    <- c("C.Assembly")
ActionType[17]    <- c("Funding")
ActionType[18]    <- c("Mixed")
ActionType[19]    <- c("Health")
ActionType[20]    <- c("Funding")
ActionType[21:25] <- c("Mixed")
ActionType[26:28] <- c("C.Assembly")
ActionType[29]    <- c("Funding")
ActionType[30:34] <- c("Mixed")
ActionType[35]    <- c("Funding")
ActionType[36]    <- c("Mixed")
ActionType[37]    <- c("Funding")
ActionType[38:52] <- c("Mixed")
ActionType[53:55] <- c("C.Assembly")
ActionType[56:58] <- c("Funding")
ActionType[59:69] <- c("Action")
ActionType[70]    <- c("C.Assembly")
ActionType[71:72] <- c("Action")

x.lkp <-match(Data$ActionCode,CodeList)
Data$ActionLabel <- ActionType[x.lkp]
table(Data$PaperName, Data$ActionLabel)  
##                  
##                   Action Agriculture Arts C.Assembly Communication Energy
##   Farmers Journal      7          14    0         10             9      6
##   Independent         10          23    3         15             8     11
##   Irish Times         14           8    9         11             8     11
##   The Journal          3           0    3          3             3      3
##                  
##                   Funding Health Impacts Mixed None Other Policy Transport
##   Farmers Journal       0      0       1    11   32    10     19         0
##   Independent           0      2      13    30  100    17      5         6
##   Irish Times          13      0      16    29  130    16     24         0
##   The Journal           6      2      14     6   30    13      6         4
ActionType2 <- ActionType                                  ## ONLY use DataAction for exploring action codes    
ActionType2[1] <- NA
Data$ActionLabel2 <- ActionType2[x.lkp]
DataAction <- Data[- which(Data$ActionLabel == 'None'),]   ## Remove all values in database that are zero, and therefore do not refer to any action code
table(DataAction$PaperName, DataAction$ActionLabel)
##                  
##                   Action Agriculture Arts C.Assembly Communication Energy
##   Farmers Journal      7          14    0         10             9      6
##   Independent         10          23    3         15             8     11
##   Irish Times         14           8    9         11             8     11
##   The Journal          3           0    3          3             3      3
##                  
##                   Funding Health Impacts Mixed Other Policy Transport
##   Farmers Journal       0      0       1    11    10     19         0
##   Independent           0      2      13    30    17      5         6
##   Irish Times          13      0      16    29    16     24         0
##   The Journal           6      2      14     6    13      6         4
###################################################
### Code listed according to location in thesis ###
###################################################

### Chapter 5.4 Pooled Analysis ###

## 5.4.1 Tone of Language
table(Data$Tone, Data$PaperName)                           ## Tone by PaperName
##      
##       Farmers Journal Independent Irish Times The Journal
##   Neg              64         172         196          65
##   Neu              43          36          57          12
##   Pos              12          35          36          19
chisq.test(table(Data$Tone, Data$PaperName))               ## Chi Square Test 
## 
##  Pearson's Chi-squared test
## 
## data:  table(Data$Tone, Data$PaperName)
## X-squared = 29.479, df = 6, p-value = 4.937e-05
chisq.test(table(Data$Tone, Data$PaperName))$stdres        ## Standardised residuals     
##      
##       Farmers Journal Independent Irish Times The Journal
##   Neg     -3.21499516  1.70890149  0.59226898  0.26146500
##   Neu      4.87192069 -2.37958196 -0.04869582 -1.92554026
##   Pos     -1.23718310  0.41379135 -0.75740334  1.87588243
## 5.4.2 Reliance on Evidence
table(Data$ScaleName, Data$PaperName)                      ## ScaleName by PaperName
##            
##             Farmers Journal Independent Irish Times The Journal
##   High                   31          50          77          24
##   Low                    25          55          76          20
##   Medium                 46          66          61          17
##   None                   10          55          68          20
##   Very High               7          17           7          15
chisq.test(table(Data$ScaleName, Data$PaperName))          ## Chi square test
## 
##  Pearson's Chi-squared test
## 
## data:  table(Data$ScaleName, Data$PaperName)
## X-squared = 47.84, df = 12, p-value = 3.332e-06
chisq.test(table(Data$ScaleName, Data$PaperName))$stdres   ## Standardised residuals       
##            
##             Farmers Journal Independent Irish Times The Journal
##   High           0.46735696 -1.67462606  1.15284810  0.15546732
##   Low           -0.71559468 -0.41462131  1.40005385 -0.67457253
##   Medium         3.61172257  0.75189856 -2.15754862 -1.86216407
##   None          -3.56082814  1.01189441  1.63945533  0.09138939
##   Very High     -0.13640653  0.66150508 -3.37400007  4.13334898
## 5.4.3 Relationship between tone and reliance on evidence
table(Data$ScaleName, Data$Tone)                           ## Tone vs. Scale
##            
##             Neg Neu Pos
##   High       87  44  51
##   Low       156  17   3
##   Medium     75  77  38
##   None      152   0   1
##   Very High  27  10   9
chisq.test(table(Data$ScaleName, Data$Tone))               ## Chi square test                
## 
##  Pearson's Chi-squared test
## 
## data:  table(Data$ScaleName, Data$Tone)
## X-squared = 222.71, df = 8, p-value < 2.2e-16
chisq.test(table(Data$ScaleName, Data$Tone))$stdres        ## Standardised Residuals
##            
##                    Neg        Neu        Pos
##   High      -6.1573787  1.6980765  6.4906679
##   Low        7.1077693 -3.8653638 -5.2809226
##   Medium    -9.1536747  8.2955310  2.9499041
##   None       9.6458205 -6.8949360 -5.2520760
##   Very High -1.1628147  0.3384045  1.2051812
### Chapter 5.5 Individual Analysis ###

## 5.5.1 Tone of language per period and per paper
table(Before$Tone, Before$PaperName)                       ## BEFORE Tone by PaperName
##      
##       Farmers Journal Independent Irish Times The Journal
##   Neg              14          37          42          14
##   Neu               6           2          17           4
##   Pos               5           1          10           8
chisq.test(table(Before$Tone, Before$PaperName))           ## Chi square test 
## Warning in chisq.test(table(Before$Tone, Before$PaperName)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Before$Tone, Before$PaperName)
## X-squared = 20.307, df = 6, p-value = 0.002441
chisq.test(table(Before$Tone, Before$PaperName))$stdres    ## Standardised Residuals
## Warning in chisq.test(table(Before$Tone, Before$PaperName)): Chi-squared
## approximation may be incorrect
##      
##       Farmers Journal Independent Irish Times The Journal
##   Neg      -1.2577159   3.9760643  -1.4053952  -1.5423764
##   Neu       0.8301495  -2.4881927   1.8621257  -0.3963612
##   Pos       0.7622159  -2.5565500  -0.1564688   2.4606491
table(During$Tone, During$PaperName)                       ## DURING Tone by PaperName
##      
##       Farmers Journal Independent Irish Times The Journal
##   Neg              33          91         117          41
##   Neu              22          26          30           3
##   Pos               6          25          22           7
chisq.test(table(During$Tone, During$PaperName))           ## Chi square test 
## 
##  Pearson's Chi-squared test
## 
## data:  table(During$Tone, During$PaperName)
## X-squared = 19.378, df = 6, p-value = 0.00357
chisq.test(table(During$Tone, During$PaperName))$stdres    ## Standardised Residuals
##      
##       Farmers Journal Independent Irish Times The Journal
##   Neg      -2.2509395  -0.8008488   0.9125115   2.2172666
##   Neu       3.6297747  -0.3117797  -0.5958266  -2.5676019
##   Pos      -1.0522402   1.4336916  -0.5609796  -0.1001659
table(After$Tone, After$PaperName)                         ## AFTER Tone by PaperName
##      
##       Farmers Journal Independent Irish Times The Journal
##   Neg              17          44          37          10
##   Neu              15           8          10           5
##   Pos               1           9           4           4
chisq.test(table(After$Tone, After$PaperName))             ## Chi square test 
## Warning in chisq.test(table(After$Tone, After$PaperName)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(After$Tone, After$PaperName)
## X-squared = 17.247, df = 6, p-value = 0.008417
chisq.test(table(After$Tone, After$PaperName))$stdres      ## Standardised Residuals
## Warning in chisq.test(table(After$Tone, After$PaperName)): Chi-squared
## approximation may be incorrect
##      
##       Farmers Journal Independent Irish Times The Journal
##   Neg      -1.9435026   1.3046444   1.2147300  -1.2925652
##   Neu       3.3946855  -2.3488717  -0.7265020   0.3455494
##   Pos      -1.6337480   1.1912900  -0.8621567   1.4944386
## Each media Sources for the entire period ##
table(FJ$Tone, FJ$PeriodName)                              ## Farmers Journal 
##      
##       After Before During
##   Neg    17     14     33
##   Neu    15      6     22
##   Pos     1      5      6
chisq.test(table(FJ$Tone, FJ$PeriodName))                  ## Chi square test          
## Warning in chisq.test(table(FJ$Tone, FJ$PeriodName)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(FJ$Tone, FJ$PeriodName)
## X-squared = 5.9373, df = 4, p-value = 0.2039
table(IT$Tone, IT$PeriodName)                              ## Irish Times 
##      
##       After Before During
##   Neg    37     42    117
##   Neu    10     17     30
##   Pos     4     10     22
chisq.test(table(IT$Tone, IT$PeriodName))                  ## Chi square test       
## 
##  Pearson's Chi-squared test
## 
## data:  table(IT$Tone, IT$PeriodName)
## X-squared = 3.0314, df = 4, p-value = 0.5526
table(Ind$Tone, Ind$PeriodName)                            ## Irish Independent 
##      
##       After Before During
##   Neg    44     37     91
##   Neu     8      2     26
##   Pos     9      1     25
chisq.test(table(Ind$Tone, Ind$PeriodName))                ## Chi square test          
## 
##  Pearson's Chi-squared test
## 
## data:  table(Ind$Tone, Ind$PeriodName)
## X-squared = 12.423, df = 4, p-value = 0.01447
chisq.test(table(Ind$Tone, Ind$PeriodName))$stdres         ## Standardised Residuals 
##      
##             After      Before      During
##   Neg  0.26775595  3.30460806 -2.72210470
##   Neu -0.43188353 -1.91177630  1.81848265
##   Pos  0.09016546 -2.34580977  1.68575659
table(TJ$Tone, TJ$PeriodName)                              ## The Journal 
##      
##       After Before During
##   Neg    10     14     41
##   Neu     5      4      3
##   Pos     4      8      7
chisq.test(table(TJ$Tone, TJ$PeriodName))                  ## Chi square test  
## Warning in chisq.test(table(TJ$Tone, TJ$PeriodName)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(TJ$Tone, TJ$PeriodName)
## X-squared = 9.9953, df = 4, p-value = 0.04051
chisq.test(table(TJ$Tone, TJ$PeriodName))$stdres           ## Standardised Residuals
## Warning in chisq.test(table(TJ$Tone, TJ$PeriodName)): Chi-squared
## approximation may be incorrect
##      
##            After     Before     During
##   Neg -1.5693096 -1.7702659  2.8294260
##   Neu  2.0332170  0.5208374 -2.0871757
##   Pos  0.1540349  1.6452364 -1.5881026
## 5.5.1 Reliance on Evidence
table(Data$ScaleName, Data$PaperName)                      ## ScaleName by PaperName    
##            
##             Farmers Journal Independent Irish Times The Journal
##   High                   31          50          77          24
##   Low                    25          55          76          20
##   Medium                 46          66          61          17
##   None                   10          55          68          20
##   Very High               7          17           7          15
chisq.test(table(Data$ScaleName, Data$PaperName))          ## Chi square test   
## 
##  Pearson's Chi-squared test
## 
## data:  table(Data$ScaleName, Data$PaperName)
## X-squared = 47.84, df = 12, p-value = 3.332e-06
chisq.test(table(Data$ScaleName, Data$PaperName))$stdres   ## Standardised Residuals 
##            
##             Farmers Journal Independent Irish Times The Journal
##   High           0.46735696 -1.67462606  1.15284810  0.15546732
##   Low           -0.71559468 -0.41462131  1.40005385 -0.67457253
##   Medium         3.61172257  0.75189856 -2.15754862 -1.86216407
##   None          -3.56082814  1.01189441  1.63945533  0.09138939
##   Very High     -0.13640653  0.66150508 -3.37400007  4.13334898
# Per Period:
chisq.test(table(Before$ScaleName, Before$PaperName))      ## BEFORE ScaleName by PaperName         
## Warning in chisq.test(table(Before$ScaleName, Before$PaperName)): Chi-
## squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Before$ScaleName, Before$PaperName)
## X-squared = 13.64, df = 12, p-value = 0.3243
chisq.test(table(During$ScaleName, During$PaperName))      ## DURING ScaleName by PaperName
## Warning in chisq.test(table(During$ScaleName, During$PaperName)): Chi-
## squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(During$ScaleName, During$PaperName)
## X-squared = 50.51, df = 12, p-value = 1.137e-06
chisq.test(table(After$ScaleName, After$PaperName))        ## AFTER ScaleName by PaperName
## Warning in chisq.test(table(After$ScaleName, After$PaperName)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(After$ScaleName, After$PaperName)
## X-squared = 30.62, df = 12, p-value = 0.002251
chisq.test(table(During$ScaleName, During$PaperName))$stdres   ## Standardised Residuals DURING
## Warning in chisq.test(table(During$ScaleName, During$PaperName)): Chi-
## squared approximation may be incorrect
##            
##             Farmers Journal Independent Irish Times The Journal
##   High          -0.44909333 -2.38303819  3.23372990 -0.92366435
##   Low            0.43123594 -1.20679810  1.43794401 -0.87803586
##   Medium         2.88291586  1.89493819 -2.93011188 -1.45091123
##   None          -3.26543533  1.10767907  0.31807406  1.43807904
##   Very High      0.06023293  1.23670174 -3.56839613  3.50905701
chisq.test(table(After$ScaleName, After$PaperName))$stdres     ## Standardised Residuals AFTER 
## Warning in chisq.test(table(After$ScaleName, After$PaperName)): Chi-squared
## approximation may be incorrect
##            
##             Farmers Journal Independent Irish Times The Journal
##   High            1.8715774   1.4316735  -3.2918650   0.2545829
##   Low            -1.2544640  -0.1334052   0.1207213   1.5982736
##   Medium          2.0097889  -1.2001194   0.4729577  -1.3892496
##   None           -1.3027434   0.1874287   2.3266796  -2.0162744
##   Very High      -1.8059764  -0.2875011   0.1737952   2.4450766
## Assess reliance on evidence for each media source over the entire period
chisq.test(table(FJ$ScaleName, FJ$PeriodName))             ## Farmers Journal     
## Warning in chisq.test(table(FJ$ScaleName, FJ$PeriodName)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(FJ$ScaleName, FJ$PeriodName)
## X-squared = 8.9503, df = 8, p-value = 0.3465
chisq.test(table(IT$ScaleName, IT$PeriodName))             ## Irish Times       
## Warning in chisq.test(table(IT$ScaleName, IT$PeriodName)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(IT$ScaleName, IT$PeriodName)
## X-squared = 29.235, df = 8, p-value = 0.0002884
chisq.test(table(Ind$ScaleName, Ind$PeriodName))           ## Irish Independent
## Warning in chisq.test(table(Ind$ScaleName, Ind$PeriodName)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Ind$ScaleName, Ind$PeriodName)
## X-squared = 7.8011, df = 8, p-value = 0.4531
chisq.test(table(TJ$ScaleName, TJ$PeriodName))             ## The Journal         
## Warning in chisq.test(table(TJ$ScaleName, TJ$PeriodName)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(TJ$ScaleName, TJ$PeriodName)
## X-squared = 12.094, df = 8, p-value = 0.1471
chisq.test(table(IT$ScaleName, IT$PeriodName))$stdres      ## Standardised Residuals Irish Times
## Warning in chisq.test(table(IT$ScaleName, IT$PeriodName)): Chi-squared
## approximation may be incorrect
##            
##                   After      Before      During
##   High      -4.04461520 -1.05618160  4.04285856
##   Low        0.20617105 -0.04554762 -0.12009594
##   Medium     0.84523122  0.82367020 -1.36652120
##   None       2.18259851  0.57402739 -2.18517994
##   Very High  2.77490781 -0.60247800 -1.62553658
## 5.5.1 Relationship between tone and reliance on evidence, Individual Analysis
chisq.test(table(FJ$ScaleName, FJ$Tone))                   ## Farmers Journal
## Warning in chisq.test(table(FJ$ScaleName, FJ$Tone)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(FJ$ScaleName, FJ$Tone)
## X-squared = 43.893, df = 8, p-value = 5.96e-07
chisq.test(table(FJ$ScaleName, FJ$Tone))$stdres
## Warning in chisq.test(table(FJ$ScaleName, FJ$Tone)): Chi-squared
## approximation may be incorrect
##            
##                    Neg        Neu        Pos
##   High      -0.7005402 -0.5224519  1.9934020
##   Low        3.8611440 -2.8263307 -1.8839887
##   Medium    -2.9222774  3.6749912 -1.0244369
##   None       3.0630324 -2.4853506 -1.1065192
##   Very High -2.9418609  1.1926485  2.9682166
chisq.test(table(IT$ScaleName, IT$Tone))                   ## Irish Times 
## Warning in chisq.test(table(IT$ScaleName, IT$Tone)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(IT$ScaleName, IT$Tone)
## X-squared = 96.395, df = 8, p-value < 2.2e-16
chisq.test(table(IT$ScaleName, IT$Tone))$stdres
## Warning in chisq.test(table(IT$ScaleName, IT$Tone)): Chi-squared
## approximation may be incorrect
##            
##                    Neg        Neu        Pos
##   High      -4.6201250  1.2750752  4.9995901
##   Low        3.8487593 -2.0112589 -3.0212889
##   Medium    -5.9769547  5.7850467  1.4847680
##   None       6.1987781 -4.6741288 -3.1371802
##   Very High  1.0259222 -0.3660047 -1.0103326
chisq.test(table(Ind$ScaleName, Ind$Tone))                 ## Irish Independent
## Warning in chisq.test(table(Ind$ScaleName, Ind$Tone)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Ind$ScaleName, Ind$Tone)
## X-squared = 80.106, df = 8, p-value = 4.654e-14
chisq.test(table(Ind$ScaleName, Ind$Tone))$stdres
## Warning in chisq.test(table(Ind$ScaleName, Ind$Tone)): Chi-squared
## approximation may be incorrect
##            
##                     Neg         Neu         Pos
##   High      -2.57900637  0.26470707  3.07244299
##   Low        4.06875493 -2.22158919 -3.02206060
##   Medium    -6.56998456  4.15011092  4.31041442
##   None       5.41714559 -3.51618433 -3.45866032
##   Very High -0.01820627  1.75673133 -1.75378250
chisq.test(table(TJ$ScaleName, TJ$Tone))                   ## The Journal
## Warning in chisq.test(table(TJ$ScaleName, TJ$Tone)): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(TJ$ScaleName, TJ$Tone)
## X-squared = 34.169, df = 8, p-value = 3.786e-05
chisq.test(table(TJ$ScaleName, TJ$Tone))$stdres
## Warning in chisq.test(table(TJ$ScaleName, TJ$Tone)): Chi-squared
## approximation may be incorrect
##            
##                    Neg        Neu        Pos
##   High      -4.1586407  2.8507866  2.5142111
##   Low        2.3961835 -0.3799486 -2.4967511
##   Medium    -0.8636307  0.7073700  0.4263883
##   None       3.4711069 -1.8997428 -2.4967511
##   Very High -0.6950770 -1.5936381  2.1385446
### END ###