prob <- sqrt(40000)
mean <- 1300
round(pnorm(979, mean, prob, lower.tail = FALSE), 4)
## [1] 0.9458
prob2 <- sqrt(1960000)
mean <- 11000
round(pnorm(8340, mean, prob2, lower.tail = FALSE), 4)
## [1] 0.9713
prob3 <- 3
mean <- 80
round(pnorm(85, mean, prob3) - pnorm(83, mean, prob3), 4)
## [1] 0.1109
mean <- 456
std <- 123
round(qnorm(.86, mean, std), 0)
## [1] 589
mean <- 6.13
std2 <- 0.06
round(qnorm(.93, mean, std2), 2)
## [1] 6.22
round(qnorm(.07, mean, std2), 2)
## [1] 6.04
A: Top 13% of scores B: Scores below the top 13% and above the bottom 55% C: Scores below the top 45% and above the bottom 20% D: Scores below the top 80% and above the bottom 9% F: Bottom 9% of scores Scores on the test are normally distributed with a mean of 78.8 and a standard deviation of 9.8. Find the numerical limits for a C grade. Round your answers to the nearest whole number, if necessary.
mean <- 78.8
std3 <- 9.8
round(qnorm(.55, mean, std3))
## [1] 80
round(qnorm(.20, mean, std3))
## [1] 71
mean <- 21.2
std4 <- 5.4
round(qnorm(.55, mean, std4), 1)
## [1] 21.9
round(pbinom(10, 151, .09), 4)
## [1] 0.192
samp <- function(sd, n) {
return(sd/sqrt(n))
}
pmean <- 48
std5 <- 7
n <- 147
msam <- samp(std5, n)
round(pnorm(48.83, pmean, msam, lower.tail = FALSE), 4)
## [1] 0.0753
pmean2 <- 91
std6<- 10
n <- 68
msam2 <- samp(std6,n)
round(pnorm(93.54, pmean2, msam2, lower.tail=FALSE), 4)
## [1] 0.0181
tikpasper <- function(r) {
return(.5*(log((1+r)/(1-r))))
}
tikpas2 <- function(n) {
return(1/sqrt(n-3))
}
perc <- tikpasper(.07)
samp <- tikpas2(540)
p4 <- pnorm(tikpasper(.04), perc, samp)
p10 <- pnorm(tikpasper(.10), perc, samp)
round(p10 - p4, 4)
## [1] 0.5153
perc <- tikpasper(.23)
samp <- tikpas2(602)
p19 <- pnorm(tikpasper(.19), perc, samp)
p27 <- pnorm(tikpasper(.27), perc, samp, lower.tail=FALSE)
round(p19 + p27, 4)
## [1] 0.301
smean <- 3.9
std <- 0.8
n <- 208
t <- abs(qt(.2/2, n-1)) #2 sided
stdt <- std/sqrt(n)
lower <- round(smean - t*stdt, 1)
upper <- round(smean + t*stdt, 1)
lower; upper
## [1] 3.8
## [1] 4
smean <- 16.6
std <- 11
n <- 7472
t<- abs(qt(.02/2, n-1)) #2 sided
stdt <- std/sqrt(n)
lower <- round(smean - t*stdt, 1)
upper <- round(smean + t*stdt, 1)
lower; upper
## [1] 16.3
## [1] 16.9
grapc <- abs(qt(.05, 26-1)) #1 sided
round(t, 4)
## [1] 2.3268
Step 1. Calculate the sample mean for the given sample data. (Round answer to 2 decimal places)
samp <- c(383.6, 347.1, 371.9, 347.6, 325.8, 337)
n <- length(samp)
smean <- round(sum(samp)/n, 2)
smean
## [1] 352.17
Step 2. Calculate the sample standard deviation for the given sample data. (Round answer to 2 decimal places)
std <- round(sqrt(var(samp)), 2)
std
## [1] 21.68
Step 3. Find the critical value that should be used in constructing the confidence interval. (Round answer to 3 decimal places)
cv <- round(abs(qt(.10/2, n-1)), 4)
cv
## [1] 2.015
Step 4. Construct the 90% confidence interval. (Round answer to 2 decimal places)
stdt <- std/sqrt(n)
lower <- round(smean - t*stdt, 2)
upper <- round(smean + t*stdt, 2)
lower; upper
## [1] 331.58
## [1] 372.76
Step 1. Find the critical value that should be used in constructing the confidence interval. (Round answer to 3 decimal places)
n <- 16
smean <- 46.4
std <- 2.45
t <- round(abs(qt(.2/2, n-1)), 3)
t
## [1] 1.341
Step 2. Construct the 80% confidence interval. (Round answer to 1 decimal place)
stdt <- std/sqrt(n)
lower <- round(smean - t*stdt, 1)
upper <- round(smean + t*stdt, 1)
lower; upper
## [1] 45.6
## [1] 47.2
pmean <- 8
std <- 1.9
z <- 2.575
n <- round(((z * std)/0.13)^2)
n
## [1] 1416
pmean <- 12.6
var <- 3.61
std <- sqrt(var)
z <- 1.96
n <- round(((z*std)/0.19)^2)
n
## [1] 384
pexp(12.79, 1/12.6)
## [1] 0.6376263
pexp(12.41, 1/12.6)
## [1] 0.6265311
Step 1. Suppose a sample of 2089 tenth graders is drawn. Of the students sampled, 1734 read above the eighth grade level. Using the data, estimate the proportion of tenth graders reading at or below the eighth grade level. (Write your answer as a fraction or a decimal number rounded to 3 decimal places)
n <- 2089
fract <- 1 - 1734/n
round(fract, 3)
## [1] 0.17
Step 2. Suppose a sample of 2089 tenth graders is drawn. Of the students sampled, 1734 read above the eighth grade level. Using the data, construct the 98% confidence interval for the population proportion of tenth graders reading at or below the eighth grade level. (Round your answers to 3 decimal places)
z <- 2.33
std <- sqrt((fract*(1-fract)) / n)
cc <- 0.5/n
lower <- round(fract - z * std - cc, 3)
upper <- round(fract + z * std + cc, 3)
lower; upper
## [1] 0.151
## [1] 0.189
Step 1. Suppose a sample of 474 tankers is drawn. Of these ships, 156 had spills. Using the data, estimate the proportion of oil tankers that had spills. (Write your answer as a fraction or a decimal number rounded to 3 decimal places)
n <- 474
fract <- 156/n
round(fract, 3)
## [1] 0.329
Step 2. Suppose a sample of 474 tankers is drawn. Of these ships, 156 had spills. Using the data, construct the 95% confidence interval for the population proportion of oil tankers that have spills each month. (Round your answers to 3 decimal places)
z <- 1.96
std <- sqrt((fract*(1-fract)) / n)
cofint <- 0.5/n
lower <- round(fract - z * std - cofint, 3)
upper <- round(fract + z * std + cofint, 3)
lower; upper
## [1] 0.286
## [1] 0.372