delivery_time <- read.csv("D:/excelR/regression assignment/Simple Linear Regression/delivery_time.csv")
View(delivery_time)
attach(delivery_time)
windows()
plot(delivery_time)
cor(Delivery.Time, Sorting.Time)
## [1] 0.8259973
summary(delivery_time)
## Delivery.Time Sorting.Time
## Min. : 8.00 Min. : 2.00
## 1st Qu.:13.50 1st Qu.: 4.00
## Median :17.83 Median : 6.00
## Mean :16.79 Mean : 6.19
## 3rd Qu.:19.75 3rd Qu.: 8.00
## Max. :29.00 Max. :10.00
boxplot(delivery_time$Delivery.Time)
boxplot(delivery_time$Sorting.Time)
reg <- lm(Delivery.Time ~ Sorting.Time, data = delivery_time)
reg
##
## Call:
## lm(formula = Delivery.Time ~ Sorting.Time, data = delivery_time)
##
## Coefficients:
## (Intercept) Sorting.Time
## 6.583 1.649
summary(reg)
##
## Call:
## lm(formula = Delivery.Time ~ Sorting.Time, data = delivery_time)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1729 -2.0298 -0.0298 0.8741 6.6722
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.5827 1.7217 3.823 0.00115 **
## Sorting.Time 1.6490 0.2582 6.387 3.98e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.935 on 19 degrees of freedom
## Multiple R-squared: 0.6823, Adjusted R-squared: 0.6655
## F-statistic: 40.8 on 1 and 19 DF, p-value: 3.983e-06
reg1<- lm(sqrt(Delivery.Time) ~ Sorting.Time)
reg1 summary(reg1) plot(reg1) cor(sqrt(Delivery.Time), Sorting.Time) plot(sqrt(Delivery.Time, Sorting.Time))
reg2<- lm(Delivery.Time ~ sqrt(Sorting.Time)) reg2 summary(reg2) plot(reg2)
cor(reg2)
plot(delivery_time\(log(Delivery.Time, delivery_time\)I(Sorting.TimeSorting.Time) data=delivery_time) cor(log(Delivery.Time), I(Sorting.TimeSorting.Time))
reg3<-lm(log(Delivery.Time)~Sorting.Time + I(Sorting.Time*Sorting.Time), data=delivery_time) reg3 summary(reg3) confint(reg3,level=0.95) predict(reg3,interval=“predict”)
reglog<- lm(log(Delivery.Time) ~ Sorting.Time) reglog plot(reglog) cor(reglog) summary(reglog)
reglogx<- lm(Delivery.Time ~ log(Sorting.Time)) reglogx summary(reglogx) cor(Delivery.Time, log(Sorting.Time)) confint(reglogx, level = 0.95) predict(reglogx, interval = “predict”)
regxy<- lm(log(Delivery.Time) ~ log(Sorting.Time)) regxy summary(regxy)
cor(log(Delivery.Time), log(Sorting.Time)) plot(log(Delivery.Time), log(Sorting.Time), data = delivery_time)
reg22<- lm((Delivery.Time^2) ~ Sorting.Time) reg22 summary(reg22)
reg23<- lm(Delivery.Time ~ (Sorting.Time)^2) reg23
summary(reg23)
reg24<- lm((Delivery.Time^2) ~ (Sorting.Time)^2) reg24 summary(reg24)
reg25<- lm (log(Delivery.Time) ~ (Sorting.Time)) reg25 summary(reg25)
reg26<- lm(log(log(Delivery.Time)) ~ (Sorting.Time)) reg26
summary(reg26)
reg28<- lm(log(log(Delivery.TimeDelivery.Time)) ~ (log(Sorting.TimeSorting.Time))) reg28
summary(reg28) cor(log(log(Delivery.TimeDelivery.Time)), (log(Sorting.TimeSorting.Time))) plot(log(log(Delivery.TimeDelivery.Time)), (log(Sorting.TimeSorting.Time)))
cor(log(Delivery.TimeDelivery.Time), (Sorting.TimeSorting.Time)) reg31 <- lm(log(Delivery.TimeDelivery.Time) ~ (Sorting.TimeSorting.Time)) reg31
summary(reg31)
reg32<- lm(log(Delivery.TimeDelivery.Time) ~ (Sorting.TimeSorting.Time)) reg32
summary(reg32) ```