CAREER_NEW_ES <- "es_career_separate.csv"
career_new <- read_csv(CAREER_NEW_ES) %>%
select(-test, -bias_type) %>%
rename(wiki_language_code = language_code,
es_hand_translation_new = sYXab)
CAREER_OLD_ES <- "/Users/mollylewis/Documents/research/Projects/1_in_progress/IATLANG/writeup/cogsci2018/analysis/study2b/data/career_effect_sizes_hand_translations.csv"
career_old <- read.csv(CAREER_OLD_ES,
col.names = c("wiki_language_code", "test_id", "test_name", "es_hand_translation_old"),
header = F,
fill = TRUE) %>%
select(-test_id, -test_name)
no_gender_langs <- c("fa", "id", "ko", "zh", "tr")
all_career_lang_es <- full_join(career_new, career_old) %>%
mutate(gender = ifelse(wiki_language_code %in% no_gender_langs,
"no gender", "gender"))
ggplot(all_career_lang_es, aes(x = es_hand_translation_old, y = es_hand_translation_new, label = wiki_language_code)) +
geom_abline(aes(slope=1, intercept=0), linetype = 2) +
geom_label(aes(fill = gender)) +
geom_smooth(method = "lm") +
xlim(0,1) +
ylim(0,1) +
ggtitle("language old vs. language new") +
theme_classic()
CAREER_BEHAVIORAL_ES <- "behavioral_by_language.csv"
career_behavioral <- read_csv(CAREER_BEHAVIORAL_ES) %>%
select(wiki_language_code, es_behavioral_iat_weighted, es_behavioral_iat) %>%
left_join(all_career_lang_es)
ggplot(career_behavioral, aes(x = es_behavioral_iat_weighted,
y = es_hand_translation_new,
label = wiki_language_code)) +
geom_label(aes(fill = gender)) +
geom_smooth(method = "lm") +
xlab("behavioral IAT") +
ylab("language IAT (new)") +
ggtitle("language vs. behavior") +
theme_classic()
ggplot(career_behavioral, aes(x = es_behavioral_iat_weighted,
y = es_hand_translation_old,
label = wiki_language_code)) +
geom_label(aes(fill = gender)) +
geom_smooth(method = "lm") +
xlab("behavioral IAT") +
ylab("language IAT (old)") +
ggtitle("language vs. behavior") +
theme_classic()
GENIUS_NEW_ES <- "es_genius_separate.csv"
GENIUS_OLD_ES1 <- "/Users/mollylewis/Documents/research/Projects/1_in_progress/IATLANG/analyses/8_gender_genius/genius_effect_sizes_google_restricted.csv"
GENIUS_OLD_ES2 <- "/Users/mollylewis/Documents/research/Projects/1_in_progress/IATLANG/analyses/8_gender_genius/genius_effect_sizes_google_restricted2.csv"
genius_new <- read_csv(GENIUS_NEW_ES) %>%
rename(wiki_language_code = language_code,
es_hand_translation_new = sYXab)
## Restricted
IAT_lang_raw1 <- read_csv(GENIUS_OLD_ES1,
col_names = c("language_code", "test",
"bias_type",
"effect_size_restricted"))
IAT_lang_raw2 <- read_csv(GENIUS_OLD_ES2,
col_names = c("language_code", "test",
"bias_type", "effect_size_restricted"))
IAT_lang_restricted_raw <- bind_rows(IAT_lang_raw1, IAT_lang_raw2)
genius_old <- IAT_lang_restricted_raw %>%
add_row(language_code = "hiur",
test = "genius_gender",
bias_type = "genius_gender",
effect_size_restricted = mean(filter(IAT_lang_restricted_raw,
language_code %in% c("hi", "ur")) %>%
pull(effect_size_restricted))) %>%
filter(!(language_code %in% c("ur"))) %>%
select(language_code, effect_size_restricted) %>%
rename(wiki_language_code = language_code,
es_hand_translation_old = effect_size_restricted)
all_gender_lang_es <- full_join(genius_old, genius_new) %>%
mutate(gender = ifelse(wiki_language_code %in% no_gender_langs,
"no gender", "gender"))
ggplot(all_gender_lang_es, aes(x = es_hand_translation_old, y = es_hand_translation_new, label = wiki_language_code)) +
geom_abline(aes(slope=1, intercept=0), linetype = 2) +
geom_label(aes(fill = gender)) +
geom_smooth(method = "lm") +
xlim(0,1) +
ylim(0,1) +
ggtitle("language old vs. language new") +
theme_classic()
We don’t really have enought languages here to look at this et.