R source
ANOVA<-aov(lm(PEVI~.,data1))
summary(ANOVA)
R output
## Df Sum Sq Mean Sq F value Pr(>F)
## LCUERP 1 698.9 698.9 86.90 7.61e-07 ***
## AMTORX 1 200.1 200.1 24.88 0.000316 ***
## Residuals 12 96.5 8.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R source
X <- model.matrix(model1); X
R output
## (Intercept) LCUERP AMTORX
## 1 1 74 76
## 2 1 73 79
## 3 1 75 89
## 4 1 74 86
## 5 1 77 77
## 6 1 61 66
## 7 1 75 90
## 8 1 80 88
## 9 1 80 86
## 10 1 84 94
## 11 1 77 81
## 12 1 69 77
## 13 1 75 87
## 14 1 78 97
## 15 1 71 72
## attr(,"assign")
## [1] 0 1 2
R source
XT <- t(X); XT #X'
R output
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## (Intercept) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## LCUERP 74 73 75 74 77 61 75 80 80 84 77 69 75 78 71
## AMTORX 76 79 89 86 77 66 90 88 86 94 81 77 87 97 72
## attr(,"assign")
## [1] 0 1 2
R source
XTX <- XT%*%X; XTX
R output
## (Intercept) LCUERP AMTORX
## (Intercept) 15 1123 1245
## LCUERP 1123 84477 93704
## AMTORX 1245 93704 104347
R source
XTY <- XT%*%PEVI; XTY #X'Y
R output
## [,1]
## (Intercept) 606.5
## LCUERP 45936.5
## AMTORX 51276.0
R source
BETAS<-solve(XTX)%*%XTY; BETAS
R output
## [,1]
## (Intercept) -51.7889714
## LCUERP 0.4498109
## AMTORX 0.7053791
R source
pp <- mean(PEVI); pp
R output
## [1] 40.43333
R source
SSM <- length(PEVI)*pp^2; SSM
R output
## [1] 24522.82
R source
SSR <- t(BETAS)%*%XTY; SSR
R output
## [,1]
## [1,] 25421.74
R source
SSRm <- t(BETAS)%*%XTY- SSM ; SSRm
R output
## [,1]
## [1,] 898.9273
R source
SSTm <- PEVI%*%PEVI- SSM; SSTm
R output
## [,1]
## [1,] 995.4333
R source
SSE <- SSTm- SSRm; SSE
R output
## [,1]
## [1,] 96.50604
R source
MSE <- SSE/ANOVA$df.residual; MSE
R output
## [,1]
## [1,] 8.04217
R source
modelo <- lm(PEVI~0+LCUERP+AMTORX)
X <- model.matrix(modelo); X
R output
## LCUERP AMTORX
## 1 74 76
## 2 73 79
## 3 75 89
## 4 74 86
## 5 77 77
## 6 61 66
## 7 75 90
## 8 80 88
## 9 80 86
## 10 84 94
## 11 77 81
## 12 69 77
## 13 75 87
## 14 78 97
## 15 71 72
## attr(,"assign")
## [1] 1 2
R source
XT <- t(X); XT #X'
R output
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## LCUERP 74 73 75 74 77 61 75 80 80 84 77 69 75 78 71
## AMTORX 76 79 89 86 77 66 90 88 86 94 81 77 87 97 72
## attr(,"assign")
## [1] 1 2
R source
XTX <- XT%*%X; XTX
R output
## LCUERP AMTORX
## LCUERP 84477 93704
## AMTORX 93704 104347
R source
XTY <- XT%*%PEVI; XTY #X'Y
R output
## [,1]
## LCUERP 45936.5
## AMTORX 51276.0
R source
BETAS_p<-solve(XTX)%*%XTY; BETAS_p
R output
## [,1]
## LCUERP -0.3314880
## AMTORX 0.7890764
R source
pp <- mean(PEVI); pp
R output
## [1] 40.43333
R source
SSM <- length(PEVI)*pp^2; SSM
R output
## [1] 24522.82
R source
SSR_ <- t(BETAS_p)%*%XTY; SSR_
R output
## [,1]
## [1,] 25233.28
R source
SSRm <- t(BETAS_p)%*%XTY- SSM ; SSRm
R output
## [,1]
## [1,] 710.4646
R source
SSTm <- PEVI%*%PEVI- SSM; SSTm
R output
## [,1]
## [1,] 995.4333
R source
SSE <- SSTm- SSRm; SSE
R output
## [,1]
## [1,] 284.9688
R source
MSE <- SSE/ANOVA$df.residual; MSE
R output
## [,1]
## [1,] 23.7474
R source
Q <- SSR - SSR_; Q
R output
## [,1]
## [1,] 188.4627
R source
tab_model(modelo)
PEVI
Predictors
Estimates
CI
p
LCUERP
-0.33
-0.89 – 0.22
0.221
AMTORX
0.79
0.29 – 1.29
0.005
Observations
15
R2 / adjusted R2
0.989 / 0.987
R source
summary(aov(modelo))
R output
## Df Sum Sq Mean Sq F value Pr(>F)
## LCUERP 1 24979 24979 1139.52 4.77e-14 ***
## AMTORX 1 254 254 11.59 0.0047 **
## Residuals 13 285 22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R source
summary(modelo)
R output
##
## Call:
## lm(formula = PEVI ~ 0 + LCUERP + AMTORX)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.8583 -3.2853 0.3447 2.6194 7.2657
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## LCUERP -0.3315 0.2576 -1.287 0.2205
## AMTORX 0.7891 0.2317 3.405 0.0047 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.682 on 13 degrees of freedom
## Multiple R-squared: 0.9888, Adjusted R-squared: 0.9871
## F-statistic: 575.6 on 2 and 13 DF, p-value: 2.05e-13
Modelo: Y (P E V I )= − 0.3315 * L C U E R P + 0.7891 * A M T O R X
Decicion:
Tomamos el p-value para contranstar: Dado que p (0.00...205)<α = 0.05 , rechazamos la H 0 . Por lo que b 0 ≠ 0 .$${\\}$$
II) H a : b 0 = b 1 = 0
R source
modelo <- lm(PEVI~0+0+AMTORX)
X <- model.matrix(modelo); X
R output
## AMTORX
## 1 76
## 2 79
## 3 89
## 4 86
## 5 77
## 6 66
## 7 90
## 8 88
## 9 86
## 10 94
## 11 81
## 12 77
## 13 87
## 14 97
## 15 72
## attr(,"assign")
## [1] 1
R source
XT <- t(X); XT #X'
R output
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## AMTORX 76 79 89 86 77 66 90 88 86 94 81 77 87 97 72
## attr(,"assign")
## [1] 1
R source
XTX <- XT%*%X; XTX
R output
## AMTORX
## AMTORX 104347
R source
XTY <- XT%*%PEVI; XTY #X'Y
R output
## [,1]
## AMTORX 51276
R source
BETAS_p<-solve(XTX)%*%XTY; BETAS_p
R output
## [,1]
## AMTORX 0.4913989
R source
pp <- mean(PEVI); pp
R output
## [1] 40.43333
R source
SSM <- length(PEVI)*pp^2; SSM
R output
## [1] 24522.82
R source
SSR_ <- t(BETAS_p)%*%XTY; SSR_
R output
## [,1]
## [1,] 25196.97
R source
SSRm <- t(BETAS_p)%*%XTY- SSM ; SSRm
R output
## [,1]
## [1,] 674.1528
R source
SSTm <- PEVI%*%PEVI- SSM; SSTm
R output
## [,1]
## [1,] 995.4333
R source
SSE <- SSTm- SSRm; SSE
R output
## [,1]
## [1,] 321.2805
R source
MSE <- SSE/ANOVA$df.residual; MSE
R output
## [,1]
## [1,] 26.77338
R source
Q <- SSR - SSR_; Q
R output
## [,1]
## [1,] 224.7745
R source
f <- Q/MSE;f
R output
## [,1]
## [1,] 8.395447
R source
tab_model(modelo)
PEVI
Predictors
Estimates
CI
p
AMTORX
0.49
0.46 – 0.52
<0.001
Observations
15
R2 / adjusted R2
0.987 / 0.987
R source
summary(aov(modelo))
R output
## Df Sum Sq Mean Sq F value Pr(>F)
## AMTORX 1 25197 25197 1098 1.06e-14 ***
## Residuals 14 321 23
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R source
summary(modelo)
R output
##
## Call:
## lm(formula = PEVI ~ 0 + 0 + AMTORX)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.432 -2.579 1.740 2.761 5.309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## AMTORX 0.49140 0.01483 33.14 1.06e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.79 on 14 degrees of freedom
## Multiple R-squared: 0.9874, Adjusted R-squared: 0.9865
## F-statistic: 1098 on 1 and 14 DF, p-value: 1.056e-14
Modelo: Y (P E V I )=0.49140 * A M T O R X
Decicion:
Tomamos el p-value para contranstar: Dado que p (0.00...106)<α = 0.05 , rechazamos la H 0 . Por lo que b 0 ≠ b 1 ≠ 0 ; esto quiere decir que al menos una de las X s explican la variabilidad de Y .$${\\}$$
III) H a : b 0 = b 2 = 0
R source
modelo <- lm(PEVI~0+LCUERP+0)
X <- model.matrix(modelo); X
R output
## LCUERP
## 1 74
## 2 73
## 3 75
## 4 74
## 5 77
## 6 61
## 7 75
## 8 80
## 9 80
## 10 84
## 11 77
## 12 69
## 13 75
## 14 78
## 15 71
## attr(,"assign")
## [1] 1
R source
XT <- t(X); XT #X'
R output
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## LCUERP 74 73 75 74 77 61 75 80 80 84 77 69 75 78 71
## attr(,"assign")
## [1] 1
R source
XTX <- XT%*%X; XTX
R output
## LCUERP
## LCUERP 84477
R source
XTY <- XT%*%PEVI; XTY #X'Y
R output
## [,1]
## LCUERP 45936.5
R source
BETAS_p<-solve(XTX)%*%XTY; BETAS_p
R output
## [,1]
## LCUERP 0.5437752
R source
pp <- mean(PEVI); pp
R output
## [1] 40.43333
R source
SSM <- length(PEVI)*pp^2; SSM
R output
## [1] 24522.82
R source
SSR_ <- t(BETAS_p)%*%XTY; SSR_
R output
## [,1]
## [1,] 24979.13
R source
SSRm <- t(BETAS_p)%*%XTY- SSM ; SSRm
R output
## [,1]
## [1,] 456.3141
R source
SSTm <- PEVI%*%PEVI- SSM; SSTm
R output
## [,1]
## [1,] 995.4333
R source
SSE <- SSTm- SSRm; SSE
R output
## [,1]
## [1,] 539.1192
R source
MSE <- SSE/ANOVA$df.residual; MSE
R output
## [,1]
## [1,] 44.9266
R source
Q <- SSR - SSR_; Q
R output
## [,1]
## [1,] 442.6132
R source
f <- Q/MSE;f
R output
## [,1]
## [1,] 9.851917
R source
tab_model(modelo)
PEVI
Predictors
Estimates
CI
p
LCUERP
0.54
0.50 – 0.59
<0.001
Observations
15
R2 / adjusted R2
0.979 / 0.977
R source
summary(aov(modelo))
R output
## Df Sum Sq Mean Sq F value Pr(>F)
## LCUERP 1 24979 24979 648.7 3.97e-13 ***
## Residuals 14 539 39
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R source
summary(modelo)
R output
##
## Call:
## lm(formula = PEVI ~ 0 + LCUERP + 0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.1703 -3.1956 0.6293 5.2169 5.8229
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## LCUERP 0.54378 0.02135 25.47 3.97e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.206 on 14 degrees of freedom
## Multiple R-squared: 0.9789, Adjusted R-squared: 0.9774
## F-statistic: 648.7 on 1 and 14 DF, p-value: 3.972e-13
Modelo: Y (P E V I )=0.54378 * L C U E R P
Decicion:
Tomamos el p-value para contranstar: Dado que p (0.00...397)<α = 0.05 , rechazamos la H 0 . Por lo que b 0 ≠ b 1 ≠ 0 ; esto quiere decir que al menos una de las X s explican la variabilidad de Y .$${\\}$$
Fin ☺