First, we create a data set.
x <- c(33.5, 33.8, 31.4, 30.2, 30, 27.1, 24.1, 21.5, 9.2)
y <- c(51.7, 48.1, 47.2, 46.9, 46.7, 40.9, 39.9, 38.2, 30.9)
Next, we will create a qq-plot for x. We supply arguments for xlim and ylim based on the min and max of the output from the qqplot function for each variable, otherwise the second qq-plot might not fit using the automatic axis scales for the first variable.
qqnorm(x,
xlim = c(
min(qqnorm(x, plot.it = FALSE)$x, qqnorm(y, plot.it = FALSE)$x),
max(qqnorm(x, plot.it = FALSE)$x, qqnorm(y, plot.it = FALSE)$x)
),
ylim = c(
min(qqnorm(x, plot.it = FALSE)$y, qqnorm(y, plot.it = FALSE)$y),
max(qqnorm(x, plot.it = FALSE)$y, qqnorm(y, plot.it = FALSE)$y)
),
pch = 16,
col = 'brown',
bty = 'l'
)

The function qqline adds the theoretically expected line for comparison.
qqnorm(x,
xlim = c(
min(qqnorm(x, plot.it = FALSE)$x, qqnorm(y, plot.it = FALSE)$x),
max(qqnorm(x, plot.it = FALSE)$x, qqnorm(y, plot.it = FALSE)$x)
),
ylim = c(
min(qqnorm(x, plot.it = FALSE)$y, qqnorm(y, plot.it = FALSE)$y),
max(qqnorm(x, plot.it = FALSE)$y, qqnorm(y, plot.it = FALSE)$y)
),
pch = 16,
col = 'brown',
bty = 'l'
)
qqline(x, col = 'brown')

The qq-plot for the second variable is added using the points function, with the result of qqnorm as the first argument. HERE IS THE TRICK IN USING points: you must specify plot.it = FALSE in the qqnorm function so that qqnorm just supplies points instead of it attempting to create a new plot.
qqnorm(x,
xlim = c(
min(qqnorm(x, plot.it = FALSE)$x, qqnorm(y, plot.it = FALSE)$x),
max(qqnorm(x, plot.it = FALSE)$x, qqnorm(y, plot.it = FALSE)$x)
),
ylim = c(
min(qqnorm(x, plot.it = FALSE)$y, qqnorm(y, plot.it = FALSE)$y),
max(qqnorm(x, plot.it = FALSE)$y, qqnorm(y, plot.it = FALSE)$y)
),
pch = 16,
col = 'brown',
bty = 'l'
)
qqline(x, col = 'brown')
points(qqnorm(y, plot.it = FALSE), pch = 16, col = 'navy')
qqline(y, col = 'navy')
legend('bottomright', legend = c('x', 'y'), fill = c('brown', 'navy'), bty = 'n')

LS0tDQp0aXRsZTogIkhvdyB0byBtYWtlIG9uZSBxcS1wbG90IHdpdGggdHdvIHZhcmlhYmxlcyINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdA0KICBodG1sX2RvY3VtZW50OiBkZWZhdWx0DQotLS0NCg0KDQpGaXJzdCwgd2UgY3JlYXRlIGEgZGF0YSBzZXQuDQpgYGB7cn0NCnggPC0gYygzMy41LCAzMy44LCAzMS40LCAzMC4yLCAzMCwgMjcuMSwgMjQuMSwgMjEuNSwgOS4yKQ0KeSA8LSBjKDUxLjcsIDQ4LjEsIDQ3LjIsIDQ2LjksIDQ2LjcsIDQwLjksIDM5LjksIDM4LjIsIDMwLjkpDQpgYGANCg0KTmV4dCwgd2Ugd2lsbCBjcmVhdGUgYSBxcS1wbG90IGZvciB4LiBXZSBzdXBwbHkgYXJndW1lbnRzIGZvciB4bGltIGFuZCB5bGltIGJhc2VkIG9uIHRoZSBtaW4gYW5kIG1heCBvZiB0aGUgb3V0cHV0IGZyb20gdGhlIHFxcGxvdCBmdW5jdGlvbiBmb3IgZWFjaCB2YXJpYWJsZSwgb3RoZXJ3aXNlIHRoZSBzZWNvbmQgcXEtcGxvdCBtaWdodCBub3QgZml0IHVzaW5nIHRoZSBhdXRvbWF0aWMgYXhpcyBzY2FsZXMgZm9yIHRoZSBmaXJzdCB2YXJpYWJsZS4NCg0KYGBge3J9DQpxcW5vcm0oeCwgDQogIHhsaW0gPSBjKA0KICAgIG1pbihxcW5vcm0oeCwgcGxvdC5pdCA9IEZBTFNFKSR4LCBxcW5vcm0oeSwgcGxvdC5pdCA9IEZBTFNFKSR4KSwgDQogICAgbWF4KHFxbm9ybSh4LCBwbG90Lml0ID0gRkFMU0UpJHgsIHFxbm9ybSh5LCBwbG90Lml0ID0gRkFMU0UpJHgpDQogICAgKSwNCiAgeWxpbSA9IGMoDQogICAgbWluKHFxbm9ybSh4LCBwbG90Lml0ID0gRkFMU0UpJHksIHFxbm9ybSh5LCBwbG90Lml0ID0gRkFMU0UpJHkpLCANCiAgICBtYXgocXFub3JtKHgsIHBsb3QuaXQgPSBGQUxTRSkkeSwgcXFub3JtKHksIHBsb3QuaXQgPSBGQUxTRSkkeSkNCiAgICApLA0KICBwY2ggPSAxNiwNCiAgY29sID0gJ2Jyb3duJywNCiAgYnR5ID0gJ2wnDQopDQpgYGANCg0KVGhlIGZ1bmN0aW9uIHFxbGluZSBhZGRzIHRoZSB0aGVvcmV0aWNhbGx5IGV4cGVjdGVkIGxpbmUgZm9yIGNvbXBhcmlzb24uDQoNCmBgYHtyfQ0KcXFub3JtKHgsIA0KICB4bGltID0gYygNCiAgICBtaW4ocXFub3JtKHgsIHBsb3QuaXQgPSBGQUxTRSkkeCwgcXFub3JtKHksIHBsb3QuaXQgPSBGQUxTRSkkeCksIA0KICAgIG1heChxcW5vcm0oeCwgcGxvdC5pdCA9IEZBTFNFKSR4LCBxcW5vcm0oeSwgcGxvdC5pdCA9IEZBTFNFKSR4KQ0KICAgICksDQogIHlsaW0gPSBjKA0KICAgIG1pbihxcW5vcm0oeCwgcGxvdC5pdCA9IEZBTFNFKSR5LCBxcW5vcm0oeSwgcGxvdC5pdCA9IEZBTFNFKSR5KSwgDQogICAgbWF4KHFxbm9ybSh4LCBwbG90Lml0ID0gRkFMU0UpJHksIHFxbm9ybSh5LCBwbG90Lml0ID0gRkFMU0UpJHkpDQogICAgKSwNCiAgcGNoID0gMTYsDQogIGNvbCA9ICdicm93bicsDQogIGJ0eSA9ICdsJw0KKQ0KcXFsaW5lKHgsIGNvbCA9ICdicm93bicpDQpgYGANCg0KVGhlIHFxLXBsb3QgZm9yIHRoZSBzZWNvbmQgdmFyaWFibGUgaXMgYWRkZWQgdXNpbmcgdGhlIHBvaW50cyBmdW5jdGlvbiwgd2l0aCB0aGUgcmVzdWx0IG9mIHFxbm9ybSBhcyB0aGUgZmlyc3QgYXJndW1lbnQuIEhFUkUgSVMgVEhFIFRSSUNLIElOIFVTSU5HIHBvaW50czogeW91IG11c3Qgc3BlY2lmeSBwbG90Lml0ID0gRkFMU0UgaW4gdGhlIHFxbm9ybSBmdW5jdGlvbiBzbyB0aGF0IHFxbm9ybSBqdXN0IHN1cHBsaWVzIHBvaW50cyBpbnN0ZWFkIG9mIGl0IGF0dGVtcHRpbmcgdG8gY3JlYXRlIGEgbmV3IHBsb3QuDQoNCmBgYHtyfQ0KcXFub3JtKHgsIA0KICB4bGltID0gYygNCiAgICBtaW4ocXFub3JtKHgsIHBsb3QuaXQgPSBGQUxTRSkkeCwgcXFub3JtKHksIHBsb3QuaXQgPSBGQUxTRSkkeCksIA0KICAgIG1heChxcW5vcm0oeCwgcGxvdC5pdCA9IEZBTFNFKSR4LCBxcW5vcm0oeSwgcGxvdC5pdCA9IEZBTFNFKSR4KQ0KICAgICksDQogIHlsaW0gPSBjKA0KICAgIG1pbihxcW5vcm0oeCwgcGxvdC5pdCA9IEZBTFNFKSR5LCBxcW5vcm0oeSwgcGxvdC5pdCA9IEZBTFNFKSR5KSwgDQogICAgbWF4KHFxbm9ybSh4LCBwbG90Lml0ID0gRkFMU0UpJHksIHFxbm9ybSh5LCBwbG90Lml0ID0gRkFMU0UpJHkpDQogICAgKSwNCiAgcGNoID0gMTYsDQogIGNvbCA9ICdicm93bicsDQogIGJ0eSA9ICdsJw0KKQ0KcXFsaW5lKHgsIGNvbCA9ICdicm93bicpDQpwb2ludHMocXFub3JtKHksIHBsb3QuaXQgPSBGQUxTRSksIHBjaCA9IDE2LCBjb2wgPSAnbmF2eScpDQpxcWxpbmUoeSwgY29sID0gJ25hdnknKQ0KbGVnZW5kKCdib3R0b21yaWdodCcsIGxlZ2VuZCA9IGMoJ3gnLCAneScpLCBmaWxsID0gYygnYnJvd24nLCAnbmF2eScpLCBidHkgPSAnbicpDQpgYGANCg0KDQo=