statapath <- "/usr/local/stata15/stata" # <- Ubuntu path to stata
#statapath <- "D:/software/STATA/Stata-64.exe" # <- Windows STATA path modify if needed
knitr::opts_chunk$set(engine.path = list(
  stata = statapath
))
library(naniar)
library(epiDisplay)
library(readr)
library(plyr)
library(dplyr)
library(tidyverse)
library(haven)
library(survey)
 # install packages if needed

1 Read the datasets and prepare datasets

1.1 CW2CB2 data set (2by2 multilevel classes)

CW2CB2 <- read_table2("~/Documents/LSHTMproject/results/50NDNS_CW2CB2.txt",  
                              col_names = FALSE)# change the path to your own path

names(CW2CB2) <- c("H0", "H1", "H2", "H3", "H4", "H5", "H6", "H7",
                   "H8", "H9", "H10", "H11", "H12", "H13", "H14",
                   "H15", "H16", "H17", "H18", "H19", "H20", "H21",
                   "H22", "H23", "ID_DAY", "AGE", "SEX", "CPROB1",
                   "CPROB2", "CPROB3", "CPROB4",
                   # "CPROB5",
                   # "CPROB6",
                   "CB", "CW", "MLCJOINT", "ID")
CW2CB2_reg <- CW2CB2[!duplicated(CW2CB2$ID), ]

CW2CB2_reg <- CW2CB2_reg %>% 
  select(ID, AGE, SEX, CB) # extract only the CB variable (Between individual classes == 1 or 2)

tab1(CW2CB2_reg$CB, graph = FALSE)
## CW2CB2_reg$CB : 
##         Frequency Percent Cum. percent
## 1            4147    67.4         67.4
## 2            2008    32.6        100.0
##   Total      6155   100.0        100.0

1.2 CW3CB2 data set (3by2 multilevel classes)

CW3CB2 <- read_table2("~/Documents/LSHTMproject/results/50NDNS_CW3CB2.txt",  
                      col_names = FALSE)# change the path to your own path

names(CW3CB2) <- c("H0", "H1", "H2", "H3", "H4", "H5", "H6", "H7",
                   "H8", "H9", "H10", "H11", "H12", "H13", "H14",
                   "H15", "H16", "H17", "H18", "H19", "H20", "H21",
                   "H22", "H23", "ID_DAY", "AGE", "SEX", "CPROB1",
                   "CPROB2", "CPROB3", "CPROB4", "CPROB5", "CPROB6",
                   "CB", "CW", "MLCJOINT", "ID")
CW3CB2_reg <- CW3CB2[!duplicated(CW3CB2$ID), ]

CW3CB2_reg <- CW3CB2_reg %>% 
  select(ID, AGE, SEX, CB) # extract only the CB variable (Between individual classes == 1 or 2)

tab1(CW3CB2_reg$CB, graph = FALSE)
## CW3CB2_reg$CB : 
##         Frequency Percent Cum. percent
## 1            3743    60.8         60.8
## 2            2412    39.2        100.0
##   Total      6155   100.0        100.0

1.3 LCGA data set (2 classes)

CARB_50_LGCA_2CLASS <- read_table2("~/Documents/LSHTMproject/results/LCGA/CARB_50_LGCA_2CLASS.txt", 
    col_names = FALSE)# change the path to your own path

names(CARB_50_LGCA_2CLASS) <- c("H0_X",  "H1_X", "H2_X",  "H3_X", "H4_X",  "H5_X", "H6_X",  "H7_X",
  "H8_X",  "H9_X",  "H10_X",  "H11_X", "H12_X",  "H13_X", "H14_X",  "H15_X", "H16_X",  "H17_X",
  "H18_X",  "H19_X", "H20_X",  "H21_X", "H22_X",  "H23_X", "H0_Y",  "H1_Y", "H2_Y",  "H3_Y",
  "H4_Y",  "H5_Y", "H6_Y",  "H7_Y", "H8_Y",  "H9_Y", "H10_Y",  "H11_Y", "H12_Y",  "H13_Y",
  "H14_Y",  "H15_Y", "H16_Y",  "H17_Y", "H18_Y",  "H19_Y", "H20_Y",  "H21_Y",
  "H22_Y",  "H23_Y", "H0_X_X",  "H1_X_X", "H2_X_X",  "H3_X_X", "H4_X_X",  "H5_X_X",
  "H6_X_X",  "H7_X_X", "H8_X_X",  "H9_X_X", "H10_X_X",  "H11_X_X", "H12_X_X",  "H13_X_X",
  "H14_X_X",  "H15_X_X", "H16_X_X",  "H17_X_X", "H18_X_X",  "H19_X_X", "H20_X_X",  "H21_X_X",
  "H22_X_X",  "H23_X_X", "H0_Y_Y",  "H1_Y_Y", "H2_Y_Y",  "H3_Y_Y", "H4_Y_Y",  "H5_Y_Y",
  "H6_Y_Y",  "H7_Y_Y", "H8_Y_Y",  "H9_Y_Y", "H10_Y_Y",  "H11_Y_Y", "H12_Y_Y",  "H13_Y_Y",
  "H14_Y_Y",  "H15_Y_Y", "H16_Y_Y",  "H17_Y_Y", "H18_Y_Y",  "H19_Y_Y", "H20_Y_Y",  "H21_Y_Y",
  "H22_Y_Y",  "H23_Y_Y", "ID", "CPROB1",  "CPROB2",
  #"CPROB3",  #"CPROB4", 
  "C")

CARB_50_LGCA_2CLASS[CARB_50_LGCA_2CLASS == "*"] <- NA

LCGA_2class <- CARB_50_LGCA_2CLASS %>% 
  select(ID, C) # extract only the C variable (classes == 1 or 2)

tab1(LCGA_2class$C, graph = FALSE)
## LCGA_2class$C : 
##         Frequency Percent Cum. percent
## 1            4283    69.6         69.6
## 2            1872    30.4        100.0
##   Total      6155   100.0        100.0

1.4 LCGA data set (3 classes)

CARB_50_LGCA_3CLASS <- read_table2("~/Documents/LSHTMproject/results/LCGA/CARB_50_LGCA_3CLASS.DAT", 
    col_names = FALSE)# change the path to your own path

names(CARB_50_LGCA_3CLASS) <- c("H0_X",  "H1_X", "H2_X",  "H3_X", "H4_X",  "H5_X", "H6_X",  "H7_X",
  "H8_X",  "H9_X",  "H10_X",  "H11_X", "H12_X",  "H13_X", "H14_X",  "H15_X", "H16_X",  "H17_X",
  "H18_X",  "H19_X", "H20_X",  "H21_X", "H22_X",  "H23_X", "H0_Y",  "H1_Y", "H2_Y",  "H3_Y",
  "H4_Y",  "H5_Y", "H6_Y",  "H7_Y", "H8_Y",  "H9_Y", "H10_Y",  "H11_Y", "H12_Y",  "H13_Y",
  "H14_Y",  "H15_Y", "H16_Y",  "H17_Y", "H18_Y",  "H19_Y", "H20_Y",  "H21_Y",
  "H22_Y",  "H23_Y", "H0_X_X",  "H1_X_X", "H2_X_X",  "H3_X_X", "H4_X_X",  "H5_X_X",
  "H6_X_X",  "H7_X_X", "H8_X_X",  "H9_X_X", "H10_X_X",  "H11_X_X", "H12_X_X",  "H13_X_X",
  "H14_X_X",  "H15_X_X", "H16_X_X",  "H17_X_X", "H18_X_X",  "H19_X_X", "H20_X_X",  "H21_X_X",
  "H22_X_X",  "H23_X_X", "H0_Y_Y",  "H1_Y_Y", "H2_Y_Y",  "H3_Y_Y", "H4_Y_Y",  "H5_Y_Y",
  "H6_Y_Y",  "H7_Y_Y", "H8_Y_Y",  "H9_Y_Y", "H10_Y_Y",  "H11_Y_Y", "H12_Y_Y",  "H13_Y_Y",
  "H14_Y_Y",  "H15_Y_Y", "H16_Y_Y",  "H17_Y_Y", "H18_Y_Y",  "H19_Y_Y", "H20_Y_Y",  "H21_Y_Y",
  "H22_Y_Y",  "H23_Y_Y", "ID", "CPROB1",  "CPROB2",
  "CPROB3",   "C")

CARB_50_LGCA_3CLASS[CARB_50_LGCA_3CLASS == "*"] <- NA

LCGA_3class <- CARB_50_LGCA_3CLASS %>% 
  select(ID, C) # extract only the C variable (classes == 1 or 2)

tab1(LCGA_3class$C, graph = FALSE)
## LCGA_3class$C : 
##         Frequency Percent Cum. percent
## 1            1783    29.0         29.0
## 2             376     6.1         35.1
## 3            3996    64.9        100.0
##   Total      6155   100.0        100.0

1.5 Individual data (BMI, WC, blood pressure, A1C etc.)

# change the following path according to your own data folders

blood78 <- read_dta("~/Downloads/UKDA-6533-stata11_se/stata11_se/ndns_rp_yr7-8a_indiv.dta")
blood56 <- read_dta("~/Downloads/UKDA-6533-stata11_se/stata11_se/ndns_rp_yr5-6a_indiv.dta")
blood14 <- read_dta("~/Downloads/UKDA-6533-stata11_se/stata11_se/ndns_rp_yr1-4a_indiv_uk.dta")

names(blood78)[names(blood78)=="seriali"] <- "ID"
names(blood56)[names(blood56)=="seriali"] <- "ID"
names(blood14)[names(blood14)=="seriali"] <- "ID"

BMI78 <- blood78 %>% 
  select(ID, Sex, age, bmival, wstval, Diabetes, bpmedc2, bpmedd2, hyper140_2, hibp140_2,
         Glucose, A1C, cigsta3, dnoft3, dnnow, wti_Y78, wtn_Y78, wtb_Y78, cluster1, cluster2, cluster3, 
         cluster4, cluster5, area, gor) %>% 
  rename(wti = wti_Y78, wtn = wtn_Y78, wtb = wtb_Y78, drink = dnoft3) %>% 
  mutate(Years = "7-8") %>% 
  replace_with_na(replace = list(bmival = -1, 
                                 wstval = -1, 
                                 bpmedd2 = -1, 
                                 bpmedc2 = -1,
                                 hyper140_2 = -7, 
                                 # hyper140_2 = -1, 
                                 hibp140_2 = -7, 
                                 # hibp140_2 = -1, 
                                 Glucose = -1, 
                                 A1C  = -1, 
                                 dnnow = -1,
                                 drink = -1,
                                 cigsta3 = -1)) %>% 
  replace_with_na(replace = list(hyper140_2 = -1, hibp140_2 = -1, 
                                 drink = -8)) %>% 
    replace_with_na(replace = list(drink = -9,
                                 cigsta3 = -8))




BMI56 <- blood56 %>% 
  select(ID, Sex, age, area, bmival, wstval, Diabetes, bpmedc2, bpmedd2, hyper140_2, hibp140_2,
         Glucose, A1C, cigsta3, dnoft3, dnnow, wti_Y56, wtn_Y56, wtb_Y56, cluster1, cluster2, cluster3, 
         cluster4, cluster5, area, gor) %>% 
  mutate(Years = "5-6") %>% 
  rename(wti = wti_Y56, wtn = wtn_Y56, wtb = wtb_Y56, drink = dnoft3) %>% 
  replace_with_na(replace = list(bmival = -1, 
                                 wstval = -1, 
                                 bpmedd2 = -1, 
                                 bpmedc2 = -1,
                                 hyper140_2 = -7, 
                                 # hyper140_2 = -1, 
                                 hibp140_2 = -7, 
                                 # hibp140_2 = -1, 
                                 Glucose = -1, 
                                 A1C  = -1, 
                                 dnnow = -1,
                                 drink = -1,
                                 cigsta3 = -1)) %>% 
  replace_with_na(replace = list(hyper140_2 = -1, hibp140_2 = -1, 
                                 drink = -8)) %>% 
    replace_with_na(replace = list(drink = -9,
                                 cigsta3 = -8))

BMI14 <- blood14 %>% 
  select(ID, Sex, age, bmival, wstval, Diabetes, bpmedc, bpmedd, hyper140, hibp140,
         Glucose, A1C, cigsta3, dnoft3, dnnow, wti_CY1234, wtn_CY1234, wtb_CY1234, cluster, area, gor) %>%
  rename(hyper140_2 = hyper140, hibp140_2 = hibp140, bpmedd2 = bpmedd, 
         bpmedc2 = bpmedc, cluster1 = cluster, 
         wti = wti_CY1234, wtn = wtn_CY1234, wtb =  wtb_CY1234, drink = dnoft3) %>% 
  mutate(cluster2 = NA, cluster3 = NA, cluster4 = NA, cluster5 = NA, Years = "1-4") %>% 
  replace_with_na(replace = list(bmival = -1, 
                                 wstval = -1, 
                                 bpmedd2 = -1, 
                                 bpmedc2 = -1,
                                 hyper140_2 = -7, 
                                 # hyper140_2 = -1, 
                                 hibp140_2 = -7, 
                                 # hibp140_2 = -1, 
                                 Glucose = -1, 
                                 A1C  = -1, 
                                 dnnow = -1,
                                 drink = -1,
                                 cigsta3 = -1)) %>% 
  replace_with_na(replace = list(hyper140_2 = -1, hibp140_2 = -1, 
                                 drink = -8)) %>% 
  replace_with_na(replace = list(drink = -9,
                                 cigsta3 = -8))


BMI <- bind_rows(BMI14, BMI56, BMI78)

CW2CB2_regss <- CW2CB2_reg %>% 
  left_join(BMI, by = "ID") ## dataset for 2by2 multilevel latent classes 

CW3CB2_regss <- CW3CB2_reg %>% 
  left_join(BMI, by = "ID") ## dataset for 3by2 multilevel latent classes

LCGA_2class <- LCGA_2class %>% 
  left_join(BMI, by = "ID") ## dataset for 2 classes LCGA

LCGA_3class <- LCGA_3class %>% 
  left_join(BMI, by = "ID") ## dataset for 3 classes LCGA

rm(blood14, blood56, blood78, BMI14, BMI56, BMI78, #BMI, 
   CW2CB2, CW2CB2_reg, CW3CB2, CW3CB2_reg, CARB_50_LGCA_2CLASS, CARB_50_LGCA_3CLASS)

2 Rescale the weighting values

# individual weighting
a <- sum(CW2CB2_regss[CW2CB2_regss$Years == "1-4",]$wti)
b <- sum(CW2CB2_regss[CW2CB2_regss$Years == "5-6",]$wti)
c <- sum(CW2CB2_regss[CW2CB2_regss$Years == "7-8",]$wti)

CW2CB2_regss$wti1to8 <- CW2CB2_regss$wti

CW2CB2_regss[CW2CB2_regss$Years == "1-4",]$wti1to8 <- CW2CB2_regss[CW2CB2_regss$Years == "1-4",]$wti*(a+b+c)*(1/2)/a
CW2CB2_regss[CW2CB2_regss$Years == "5-6",]$wti1to8 <- CW2CB2_regss[CW2CB2_regss$Years == "5-6",]$wti*(a+b+c)*(1/4)/b
CW2CB2_regss[CW2CB2_regss$Years == "7-8",]$wti1to8 <- CW2CB2_regss[CW2CB2_regss$Years == "7-8",]$wti*(a+b+c)*(1/4)/c
mean(CW2CB2_regss$wti1to8)
## [1] 1.209817
CW2CB2_regss$wti1to8 <- CW2CB2_regss$wti1to8/1.209816814
summ(CW2CB2_regss$wti1to8, graph = FALSE)
##  obs. mean   median  s.d.   min.   max.  
##  6155 1      0.892   0.897  0      5.893
sum(CW2CB2_regss$wti1to8, graph = FALSE) #Check if the weighting sum up to the sample size we have
## [1] 6155
# Nurse weights

a <- sum(CW2CB2_regss[CW2CB2_regss$Years == "1-4",]$wtn)
b <- sum(CW2CB2_regss[CW2CB2_regss$Years == "5-6",]$wtn)
c <- sum(CW2CB2_regss[CW2CB2_regss$Years == "7-8",]$wtn)

CW2CB2_regss$wtn1to8 <- CW2CB2_regss$wtn

CW2CB2_regss[CW2CB2_regss$Years == "1-4",]$wtn1to8 <- CW2CB2_regss[CW2CB2_regss$Years == "1-4",]$wtn*(a+b+c)*(1/2)/a
CW2CB2_regss[CW2CB2_regss$Years == "5-6",]$wtn1to8 <- CW2CB2_regss[CW2CB2_regss$Years == "5-6",]$wtn*(a+b+c)*(1/4)/b
CW2CB2_regss[CW2CB2_regss$Years == "7-8",]$wtn1to8 <- CW2CB2_regss[CW2CB2_regss$Years == "7-8",]$wtn*(a+b+c)*(1/4)/c
mean(CW2CB2_regss$wtn1to8)
## [1] 0.9070036
CW2CB2_regss$wtn1to8 <- CW2CB2_regss$wtn1to8/0.907003577
summ(CW2CB2_regss$wtn1to8, graph = FALSE)
##  obs. mean   median  s.d.   min.   max.  
##  6155 1      0.588   1.203  0      8.516
sum(CW2CB2_regss$wtn1to8, graph = FALSE) #Check if the weighting sum up to the sample size we have
## [1] 6155
# Blood weights
a <- sum(CW2CB2_regss[CW2CB2_regss$Years == "1-4",]$wtb)
b <- sum(CW2CB2_regss[CW2CB2_regss$Years == "5-6",]$wtb)
c <- sum(CW2CB2_regss[CW2CB2_regss$Years == "7-8",]$wtb)

CW2CB2_regss$wtb1to8 <- CW2CB2_regss$wtb

CW2CB2_regss[CW2CB2_regss$Years == "1-4",]$wtb1to8 <- CW2CB2_regss[CW2CB2_regss$Years == "1-4",]$wtb*(a+b+c)*(1/2)/a
CW2CB2_regss[CW2CB2_regss$Years == "5-6",]$wtb1to8 <- CW2CB2_regss[CW2CB2_regss$Years == "5-6",]$wtb*(a+b+c)*(1/4)/b
CW2CB2_regss[CW2CB2_regss$Years == "7-8",]$wtb1to8 <- CW2CB2_regss[CW2CB2_regss$Years == "7-8",]$wtb*(a+b+c)*(1/4)/c
mean(CW2CB2_regss$wtb1to8)
## [1] 0.4817445
CW2CB2_regss$wtb1to8 <- CW2CB2_regss$wtb1to8/0.4817444505
summ(CW2CB2_regss$wtb1to8, graph = FALSE)
##  obs. mean   median  s.d.   min.   max.  
##  6155 1      0       1.618  0      14.577
sum(CW2CB2_regss$wtb1to8, graph = FALSE) #Check if the weighting sum up to the sample size we have
## [1] 6155
weightings <- CW2CB2_regss %>% select(ID, wti1to8, wtn1to8, wtb1to8)

# add the weightings to the other datasets
CW3CB2_regss <- CW3CB2_regss %>% 
  left_join(weightings, by = "ID")

LCGA_2class <- LCGA_2class %>% 
  left_join(weightings, by = "ID")

LCGA_3class <- LCGA_3class %>% 
  left_join(weightings, by = "ID")

3 (BMI) survey designed analysis

3.1 2by2 multilevel LCA dataset (BMI)

 # specifying a survey design

CW2CB2_regss$dnnow <- as.factor(CW2CB2_regss$dnnow)
CW2CB2_regss$cigsta3 <- as.factor(CW2CB2_regss$cigsta3)

cw2cb2 <- svydesign(id = ~area, strat = ~gor, weights=~wti1to8, data = CW2CB2_regss, nest = TRUE)

summary(svyglm(bmival ~ CB, design = cw2cb2))
summary(svyglm(bmival ~ CB + AGE + SEX + cigsta3 + dnnow, design = cw2cb2))
## Call:
## svyglm(formula = bmival ~ CB, design = cw2cb2)
## 
## Survey design:
## svydesign(id = ~area, strat = ~gor, weights = ~wti1to8, data = CW2CB2_regss, 
##     nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  26.6815     0.2917  91.468  < 2e-16 ***
## CB            0.5474     0.2026   2.702  0.00699 ** 
## ---
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
## 
## (Dispersion parameter for gaussian family taken to be 28.88983)
## 
## Number of Fisher Scoring iterations: 2
## 
## 
## Call:
## svyglm(formula = bmival ~ CB + AGE + SEX + cigsta3 + dnnow, design = cw2cb2)
## 
## Survey design:
## svydesign(id = ~area, strat = ~gor, weights = ~wti1to8, data = CW2CB2_regss, 
##     nest = TRUE)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 24.53607    0.49745  49.324  < 2e-16 ***
## CB           0.44258    0.20174   2.194   0.0285 *  
## AGE          0.04177    0.00582   7.176 1.33e-12 ***
## SEX         -0.21736    0.18620  -1.167   0.2433    
## cigsta32     1.18384    0.29947   3.953 8.22e-05 ***
## cigsta33     0.48760    0.24885   1.959   0.0503 .  
## dnnow2       0.42970    0.24531   1.752   0.0801 .  
## ---
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
## 
## (Dispersion parameter for gaussian family taken to be 27.97746)
## 
## Number of Fisher Scoring iterations: 2

After adjusting for age, sex, smoking, and drinking, subjects in latent class 2 were averagely with 0.748599 kg/m2 higher BMI compared with subjects in latent class 1.

3.1.1 Compare with results in Stata (they are very similar, and we use Stata subsequently):

## 
## . use "/home/wangcc-me/Downloads/UKDA-6533-stata11_se/stata11_se/CW2CB2_regss.d
## > ta", clear
## 
## . 
## . label define smoking 1 "current" 2 "ex-smoker" 3 "Never"
## 
## . label values cigsta3 smoking
## 
## . label define drinking 1 "no" 2 "yes"
## 
## . label values dnnow drinking
## 
## . label define gender 1 "Men" 2 "Women"
## 
## . label values Sex gender
## 
## . 
## . 
## . svyset area [pweight = wti1to8], strata(gor)
## 
##       pweight: wti1to8
##           VCE: linearized
##   Single unit: missing
##      Strata 1: gor
##          SU 1: area
##         FPC 1: <zero>
## 
## . 
## . svydescribe wti
## 
## Survey: Describing stage 1 sampling units
## 
##       pweight: wti1to8
##           VCE: linearized
##   Single unit: missing
##      Strata 1: gor
##          SU 1: area
##         FPC 1: <zero>
## 
##                              #Obs with  #Obs with     #Obs per included Unit
##            #Units    #Units   complete  missing   ----------------------------
## Stratum   included  omitted     data      data      min       mean      max   
## --------  --------  --------  --------  --------  --------  --------  --------
##        1        42         0       215         0         2       5.1         8
##        2       111         0       480         0         1       4.3         9
##        3        83         0       340         0         1       4.1         7
##        4        71         0       327         0         1       4.6         8
##        5        84         0       403         0         1       4.8         8
##        6        89         0       424         0         2       4.8         9
##        7       111         0       380         0         1       3.4         8
##        8       130         0       575         0         1       4.4         8
##        9        82         0       348         0         2       4.2         8
##       10       184         0       846         0         1       4.6         9
##       11       255         0     1,033         0         1       4.1         9
##       12       172         0       784         0         1       4.6         9
## --------  --------  --------  --------  --------  --------  --------  --------
##       12     1,414         0     6,155         0         1       4.4         9
##                               ------------------
##                                       6,155
## 
## . svy: mean bmival
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      5,762
## Number of PSUs   =   1,408        Population size = 5,683.0462
##                                   Design df       =      1,396
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       bmival |   27.41424   .1007122      27.21667     27.6118
## --------------------------------------------------------------
## 
## . 
## . // two-way table
## . 
## . svy: tabulate Sex CB, row se ci format(%7.3f)
## (running tabulate on estimation sample)
## 
## Number of strata   =        12                  Number of obs     =      6,155
## Number of PSUs     =     1,414                  Population size   =      6,155
##                                                 Design df         =      1,402
## 
## -------------------------------------------------------
##           |                     CB                     
##       Sex |             1              2          Total
## ----------+--------------------------------------------
##       Men |         0.647          0.353          1.000
##           |       (0.013)        (0.013)               
##           | [0.622,0.672]  [0.328,0.378]               
##           | 
##     Women |         0.680          0.320          1.000
##           |       (0.011)        (0.011)               
##           | [0.659,0.700]  [0.300,0.341]               
##           | 
##     Total |         0.664          0.336          1.000
##           |       (0.008)        (0.008)               
##           | [0.648,0.681]  [0.319,0.352]               
## -------------------------------------------------------
##   Key:  row proportion
##         (linearized standard error of row proportion)
##         [95% confidence interval for row proportion]
## 
##   Pearson:
##     Uncorrected   chi2(1)         =    7.3933
##     Design-based  F(1, 1402)      =    3.9332     P = 0.0475
## 
## . 
## . // comparing means
## . svy: mean bmi, over(CB)
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      5,762
## Number of PSUs   =   1,408        Population size = 5,683.0462
##                                   Design df       =      1,396
## 
##             1: CB = 1
##             2: CB = 2
## 
## --------------------------------------------------------------
##              |             Linearized
##         Over |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
## bmival       |
##            1 |   27.22889   .1233456      26.98693    27.47085
##            2 |   27.77631   .1655422      27.45157    28.10105
## --------------------------------------------------------------
## 
## . 
## . svy: regress bmival i.CB
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      5,762
## Number of PSUs     =     1,408                  Population size   = 5,683.0462
##                                                 Design df         =      1,396
##                                                 F(   1,   1396)   =       7.30
##                                                 Prob > F          =     0.0070
##                                                 R-squared         =     0.0023
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       bmival |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |   .5474219   .2025698     2.70   0.007     .1500479    .9447959
##        _cons |   27.22889   .1233456   220.75   0.000     26.98693    27.47085
## ------------------------------------------------------------------------------
## 
## . svy: regress bmival i.CB age i.Sex i.cigsta3 i.dnnow
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      5,759
## Number of PSUs     =     1,408                  Population size   = 5,678.1909
##                                                 Design df         =      1,396
##                                                 F(   6,   1391)   =      16.82
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.0339
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       bmival |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |   .4426651   .2017238     2.19   0.028     .0469506    .8383796
##          age |   .0417652     .00582     7.18   0.000     .0303484    .0531821
##              |
##          Sex |
##       Women  |  -.2173063   .1861902    -1.17   0.243    -.5825491    .1479364
##              |
##      cigsta3 |
##   ex-smoker  |   1.183842   .2994778     3.95   0.000      .596367    1.771317
##       Never  |   .4876578   .2488466     1.96   0.050    -.0004958    .9758115
##              |
##        dnnow |
##         yes  |   .4296711   .2453108     1.75   0.080    -.0515465    .9108887
##        _cons |   24.76124   .3497594    70.80   0.000     24.07513    25.44735
## ------------------------------------------------------------------------------
## 
## . 
## . svy: regress wstval i.CB#i.Sex age  i.cigsta3 i.dnnow
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      4,864
## Number of PSUs     =     1,370                  Population size   = 4,522.9738
##                                                 Design df         =      1,358
##                                                 F(   7,   1352)   =     105.53
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.2049
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##       CB#Sex |
##     1#Women  |  -9.548281   .5987538   -15.95   0.000    -10.72286   -8.373698
##       2#Men  |   1.101516   .8381474     1.31   0.189    -.5426876     2.74572
##     2#Women  |  -9.654859   .7472127   -12.92   0.000    -11.12068   -8.189043
##              |
##          age |   .2321863   .0158729    14.63   0.000     .2010482    .2633243
##              |
##      cigsta3 |
##   ex-smoker  |   1.770304   .8655538     2.05   0.041     .0723361    3.468271
##       Never  |  -1.013585   .7438516    -1.36   0.173    -2.472808    .4456378
##              |
##        dnnow |
##         yes  |   2.118908   .6652328     3.19   0.001     .8139127    3.423904
##        _cons |   86.30946   1.019941    84.62   0.000     84.30863    88.31029
## ------------------------------------------------------------------------------
## 
## . 
## . svy: regress wst i.CB age i.cigsta3 i.dnnow if Sex == 1
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      2,004
## Number of PSUs     =     1,055                  Population size   = 2,210.0429
##                                                 Design df         =      1,043
##                                                 F(   5,   1039)   =      35.14
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.1472
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |   1.007916   .8319585     1.21   0.226     -.624587    2.640419
##          age |   .2729095   .0246606    11.07   0.000     .2245195    .3212996
##              |
##      cigsta3 |
##   ex-smoker  |   2.220963   1.246324     1.78   0.075    -.2246258    4.666551
##       Never  |  -.2888131   1.089376    -0.27   0.791    -2.426431    1.848805
##              |
##        dnnow |
##         yes  |   1.321979   1.015162     1.30   0.193    -.6700136    3.313973
##        _cons |   84.01739   1.525234    55.08   0.000     81.02451    87.01027
## ------------------------------------------------------------------------------
## 
## . svy: regress wst i.CB age i.cigsta3 i.dnnow if Sex == 2
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      2,860
## Number of PSUs     =     1,230                  Population size   = 2,312.9309
##                                                 Design df         =      1,218
##                                                 F(   5,   1214)   =      25.13
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.0817
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |   .0698594   .7441777     0.09   0.925    -1.390153    1.529872
##          age |   .1972089   .0197849     9.97   0.000     .1583927    .2360251
##              |
##      cigsta3 |
##   ex-smoker  |   .8837992   1.164231     0.76   0.448    -1.400322     3.16792
##       Never  |  -1.825048   1.008156    -1.81   0.070    -3.802964    .1528668
##              |
##        dnnow |
##         yes  |   2.801683   .8710974     3.22   0.001     1.092665      4.5107
##        _cons |   78.97532   1.246172    63.37   0.000     76.53044     81.4202
## ------------------------------------------------------------------------------

3.2 3by2 multilevel LCA dataset (BMI)

## 
## . use "/home/wangcc-me/Downloads/UKDA-6533-stata11_se/stata11_se/CW3CB2_regss.d
## > ta", clear
## 
## . 
## . label define smoking 1 "current" 2 "ex-smoker" 3 "Never"
## 
## . label values cigsta3 smoking
## 
## . label define drinking 1 "no" 2 "yes"
## 
## . label values dnnow drinking
## 
## . label define gender 1 "Men" 2 "Women"
## 
## . label values Sex gender
## 
## . 
## . 
## . svyset area [pweight = wti1to8], strata(gor)
## 
##       pweight: wti1to8
##           VCE: linearized
##   Single unit: missing
##      Strata 1: gor
##          SU 1: area
##         FPC 1: <zero>
## 
## . svydescribe wti
## 
## Survey: Describing stage 1 sampling units
## 
##       pweight: wti1to8
##           VCE: linearized
##   Single unit: missing
##      Strata 1: gor
##          SU 1: area
##         FPC 1: <zero>
## 
##                              #Obs with  #Obs with     #Obs per included Unit
##            #Units    #Units   complete  missing   ----------------------------
## Stratum   included  omitted     data      data      min       mean      max   
## --------  --------  --------  --------  --------  --------  --------  --------
##        1        42         0       215         0         2       5.1         8
##        2       111         0       480         0         1       4.3         9
##        3        83         0       340         0         1       4.1         7
##        4        71         0       327         0         1       4.6         8
##        5        84         0       403         0         1       4.8         8
##        6        89         0       424         0         2       4.8         9
##        7       111         0       380         0         1       3.4         8
##        8       130         0       575         0         1       4.4         8
##        9        82         0       348         0         2       4.2         8
##       10       184         0       846         0         1       4.6         9
##       11       255         0     1,033         0         1       4.1         9
##       12       172         0       784         0         1       4.6         9
## --------  --------  --------  --------  --------  --------  --------  --------
##       12     1,414         0     6,155         0         1       4.4         9
##                               ------------------
##                                       6,155
## 
## . svy: mean bmival
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      5,762
## Number of PSUs   =   1,408        Population size = 5,683.0462
##                                   Design df       =      1,396
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       bmival |   27.41424   .1007122      27.21667     27.6118
## --------------------------------------------------------------
## 
## . svy: mean bmival if CB == 1
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      3,493
## Number of PSUs   =   1,330        Population size = 3,353.6321
##                                   Design df       =      1,318
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       bmival |   27.23762   .1280732      26.98637    27.48887
## --------------------------------------------------------------
## 
## . svy: mean bmival if CB == 2
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      2,269
## Number of PSUs   =   1,149        Population size = 2,329.4141
##                                   Design df       =      1,137
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       bmival |   27.66851   .1592101      27.35613    27.98089
## --------------------------------------------------------------
## 
## . 
## . svy: regress bmival i.CB
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      5,762
## Number of PSUs     =     1,408                  Population size   = 5,683.0462
##                                                 Design df         =      1,396
##                                                 F(   1,   1396)   =       4.49
##                                                 Prob > F          =     0.0343
##                                                 R-squared         =     0.0016
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       bmival |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |   .4308947   .2033444     2.12   0.034     .0320012    .8297882
##        _cons |   27.23762   .1281177   212.60   0.000     26.98629    27.48894
## ------------------------------------------------------------------------------
## 
## . svy: regress bmival i.CB age i.Sex i.cigsta3 i.dnnow
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      5,759
## Number of PSUs     =     1,408                  Population size   = 5,678.1909
##                                                 Design df         =      1,396
##                                                 F(   6,   1391)   =      16.00
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.0332
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       bmival |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |    .303214   .1983815     1.53   0.127    -.0859439    .6923719
##          age |   .0419207   .0057981     7.23   0.000     .0305467    .0532948
##              |
##          Sex |
##       Women  |   -.220035    .186015    -1.18   0.237    -.5849341     .144864
##              |
##      cigsta3 |
##   ex-smoker  |   1.177303   .3000094     3.92   0.000     .5887854    1.765821
##       Never  |   .4646605   .2490891     1.87   0.062    -.0239687    .9532898
##              |
##        dnnow |
##         yes  |   .4170172   .2441024     1.71   0.088    -.0618298    .8958643
##        _cons |   24.79733   .3541021    70.03   0.000      24.1027    25.49196
## ------------------------------------------------------------------------------

3.3 2 classes LCGA dataset (BMI)

## 
## . 
## . use "/home/wangcc-me/Downloads/UKDA-6533-stata11_se/stata11_se/LCGA_2class.dt
## > a", clear
## 
## . 
## . label define smoking 1 "current" 2 "ex-smoker" 3 "Never"
## 
## . label values cigsta3 smoking
## 
## . label define drinking 1 "no" 2 "yes"
## 
## . label values dnnow drinking
## 
## . label define gender 1 "Men" 2 "Women"
## 
## . label values Sex gender
## 
## . 
## . 
## . 
## . svyset area [pweight = wti1to8], strata(gor)
## 
##       pweight: wti1to8
##           VCE: linearized
##   Single unit: missing
##      Strata 1: gor
##          SU 1: area
##         FPC 1: <zero>
## 
## . svydescribe wti
## 
## Survey: Describing stage 1 sampling units
## 
##       pweight: wti1to8
##           VCE: linearized
##   Single unit: missing
##      Strata 1: gor
##          SU 1: area
##         FPC 1: <zero>
## 
##                              #Obs with  #Obs with     #Obs per included Unit
##            #Units    #Units   complete  missing   ----------------------------
## Stratum   included  omitted     data      data      min       mean      max   
## --------  --------  --------  --------  --------  --------  --------  --------
##        1        42         0       215         0         2       5.1         8
##        2       111         0       480         0         1       4.3         9
##        3        83         0       340         0         1       4.1         7
##        4        71         0       327         0         1       4.6         8
##        5        84         0       403         0         1       4.8         8
##        6        89         0       424         0         2       4.8         9
##        7       111         0       380         0         1       3.4         8
##        8       130         0       575         0         1       4.4         8
##        9        82         0       348         0         2       4.2         8
##       10       184         0       846         0         1       4.6         9
##       11       255         0     1,033         0         1       4.1         9
##       12       172         0       784         0         1       4.6         9
## --------  --------  --------  --------  --------  --------  --------  --------
##       12     1,414         0     6,155         0         1       4.4         9
##                               ------------------
##                                       6,155
## 
## . svy: mean bmival
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      5,762
## Number of PSUs   =   1,408        Population size = 5,683.0462
##                                   Design df       =      1,396
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       bmival |   27.41424   .1007122      27.21667     27.6118
## --------------------------------------------------------------
## 
## . svy: mean bmival if C == 1
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      3,995
## Number of PSUs   =   1,362        Population size = 3,839.1006
##                                   Design df       =      1,350
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       bmival |   27.58884   .1261062      27.34146    27.83623
## --------------------------------------------------------------
## 
## . svy: mean bmival if C == 2
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      1,767
## Number of PSUs   =     998        Population size = 1,843.9456
##                                   Design df       =        986
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       bmival |   27.05071   .1526066      26.75124    27.35018
## --------------------------------------------------------------
## 
## . 
## . 
## . 
## . svy: regress bmival i.C
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      5,762
## Number of PSUs     =     1,408                  Population size   = 5,683.0462
##                                                 Design df         =      1,396
##                                                 F(   1,   1396)   =       7.69
##                                                 Prob > F          =     0.0056
##                                                 R-squared         =     0.0022
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       bmival |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##          2.C |  -.5381346   .1940585    -2.77   0.006    -.9188123   -.1574569
##        _cons |   27.58884   .1261553   218.69   0.000     27.34137    27.83632
## ------------------------------------------------------------------------------
## 
## . svy: regress bmival i.C age i.Sex i.cigsta3 i.dnnow
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      5,759
## Number of PSUs     =     1,408                  Population size   = 5,678.1909
##                                                 Design df         =      1,396
##                                                 F(   6,   1391)   =      18.02
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.0361
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       bmival |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##          2.C |  -.7014704    .190913    -3.67   0.000    -1.075978   -.3269631
##          age |   .0443449   .0057965     7.65   0.000      .032974    .0557157
##              |
##          Sex |
##       Women  |  -.2403073   .1847549    -1.30   0.194    -.6027345    .1221198
##              |
##      cigsta3 |
##   ex-smoker  |   1.170385   .2986249     3.92   0.000     .5845836    1.756187
##       Never  |   .4235318   .2485641     1.70   0.089    -.0640676    .9111313
##              |
##        dnnow |
##         yes  |   .3127793   .2413658     1.30   0.195    -.1606995     .786258
##        _cons |   25.08751   .3500082    71.68   0.000     24.40091    25.77411
## ------------------------------------------------------------------------------

3.4 3 classes LCGA dataset (BMI)

## 
## . use "/home/wangcc-me/Downloads/UKDA-6533-stata11_se/stata11_se/LCGA_3class.dt
## > a", clear
## 
## . 
## . label define smoking 1 "current" 2 "ex-smoker" 3 "Never"
## 
## . label values cigsta3 smoking
## 
## . label define drinking 1 "no" 2 "yes"
## 
## . label values dnnow drinking
## 
## . label define gender 1 "Men" 2 "Women"
## 
## . label values Sex gender
## 
## . 
## . 
## . svyset area [pweight = wti1to8], strata(gor)
## 
##       pweight: wti1to8
##           VCE: linearized
##   Single unit: missing
##      Strata 1: gor
##          SU 1: area
##         FPC 1: <zero>
## 
## . svy: mean bmival
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      5,762
## Number of PSUs   =   1,408        Population size = 5,683.0462
##                                   Design df       =      1,396
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       bmival |   27.41424   .1007122      27.21667     27.6118
## --------------------------------------------------------------
## 
## . svy: mean bmival if C == 1
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      1,653
## Number of PSUs   =     964        Population size = 1,588.6944
##                                   Design df       =        952
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       bmival |   27.50674   .2127282      27.08927    27.92421
## --------------------------------------------------------------
## 
## . svy: mean bmival if C == 2
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =        351
## Number of PSUs   =     305        Population size =  406.06487
##                                   Design df       =        293
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       bmival |   27.03672   .3064126      26.43367    27.63977
## --------------------------------------------------------------
## 
## . svy: mean bmival if C == 3
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      3,758
## Number of PSUs   =   1,330        Population size =  3,688.287
##                                   Design df       =      1,318
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       bmival |   27.41596   .1174526      27.18554    27.64637
## --------------------------------------------------------------
## 
## . svy: regress bmival i.C
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      5,762
## Number of PSUs     =     1,408                  Population size   = 5,683.0462
##                                                 Design df         =      1,396
##                                                 F(   2,   1395)   =       0.84
##                                                 Prob > F          =     0.4330
##                                                 R-squared         =     0.0004
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       bmival |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##            C |
##           2  |  -.4700138   .3713259    -1.27   0.206    -1.198431    .2584031
##           3  |  -.0907806    .238746    -0.38   0.704    -.5591203    .3775591
##              |
##        _cons |   27.50674   .2125638   129.40   0.000     27.08976    27.92372
## ------------------------------------------------------------------------------
## 
## . svy: regress bmival i.C age i.Sex i.cigsta3 i.dnnow
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      5,759
## Number of PSUs     =     1,408                  Population size   = 5,678.1909
##                                                 Design df         =      1,396
##                                                 F(   7,   1390)   =      13.90
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.0340
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       bmival |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##            C |
##           2  |  -.7507808   .3720919    -2.02   0.044      -1.4807   -.0208612
##           3  |  -.3979093   .2410511    -1.65   0.099    -.8707707    .0749522
##              |
##          age |   .0443295   .0058438     7.59   0.000     .0328659    .0557931
##              |
##          Sex |
##       Women  |  -.2195277   .1850225    -1.19   0.236    -.5824798    .1434244
##              |
##      cigsta3 |
##   ex-smoker  |   1.184243   .2999359     3.95   0.000     .5958689    1.772616
##       Never  |   .4416676   .2489203     1.77   0.076    -.0466307    .9299658
##              |
##        dnnow |
##         yes  |   .3043295   .2443122     1.25   0.213    -.1749292    .7835882
##        _cons |   25.15022   .3712491    67.74   0.000     24.42196    25.87849
## ------------------------------------------------------------------------------

4 (Waist Circumference) survey designed analysis

4.1 2by2 multilevel LCA dataset (WC)

## 
## . use "/home/wangcc-me/Downloads/UKDA-6533-stata11_se/stata11_se/CW2CB2_regss.d
## > ta", clear
## 
## . 
## . label define smoking 1 "current" 2 "ex-smoker" 3 "Never"
## 
## . label values cigsta3 smoking
## 
## . label define drinking 1 "no" 2 "yes"
## 
## . label values dnnow drinking
## 
## . label define gender 1 "Men" 2 "Women"
## 
## . label values Sex gender
## 
## . 
## . 
## . svyset area [pweight = wti1to8], strata(gor)
## 
##       pweight: wti1to8
##           VCE: linearized
##   Single unit: missing
##      Strata 1: gor
##          SU 1: area
##         FPC 1: <zero>
## 
## . 
## . //svydescribe wti
## . svy: mean wstval
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      4,866
## Number of PSUs   =   1,370        Population size = 4,526.3997
##                                   Design df       =      1,358
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       wstval |   93.14676   .3030883      92.55219    93.74133
## --------------------------------------------------------------
## 
## . svy: mean wstval if CB == 1
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      3,269
## Number of PSUs   =   1,270        Population size = 2,963.6088
##                                   Design df       =      1,258
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       wstval |   92.59988    .354112      91.90516    93.29459
## --------------------------------------------------------------
## 
## . svy: mean wstval if CB == 2
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      1,597
## Number of PSUs   =     953        Population size = 1,562.7909
##                                   Design df       =        941
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       wstval |   94.18384   .5374614      93.12908     95.2386
## --------------------------------------------------------------
## 
## . 
## . 
## . svy: regress wst i.CB
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      4,866
## Number of PSUs     =     1,370                  Population size   = 4,526.3997
##                                                 Design df         =      1,358
##                                                 F(   1,   1358)   =       6.21
##                                                 Prob > F          =     0.0128
##                                                 R-squared         =     0.0026
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |    1.58396   .6354687     2.49   0.013     .3373536    2.830567
##        _cons |   92.59988   .3542883   261.37   0.000     91.90487    93.29489
## ------------------------------------------------------------------------------
## 
## . svy: regress wst i.CB age i.Sex i.cigsta3 i.dnnow
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      4,864
## Number of PSUs     =     1,370                  Population size   = 4,522.9738
##                                                 Design df         =      1,358
##                                                 F(   6,   1353)   =     122.48
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.2045
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |   .5044856   .5701978     0.88   0.376    -.6140785     1.62305
##          age |   .2319529   .0158976    14.59   0.000     .2007663    .2631394
##              |
##          Sex |
##       Women  |  -9.966613   .4960872   -20.09   0.000    -10.93979   -8.993432
##              |
##      cigsta3 |
##   ex-smoker  |   1.760095   .8669077     2.03   0.043     .0594715    3.460719
##       Never  |   -1.02313   .7444026    -1.37   0.170    -2.483433    .4371741
##              |
##        dnnow |
##         yes  |   2.137331   .6651172     3.21   0.001     .8325619    3.442099
##        _cons |   86.54583   1.037529    83.42   0.000      84.5105    88.58116
## ------------------------------------------------------------------------------
## 
## . svy: regress wstval i.CB#i.Sex age  i.cigsta3 i.dnnow
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      4,864
## Number of PSUs     =     1,370                  Population size   = 4,522.9738
##                                                 Design df         =      1,358
##                                                 F(   7,   1352)   =     105.53
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.2049
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##       CB#Sex |
##     1#Women  |  -9.548281   .5987538   -15.95   0.000    -10.72286   -8.373698
##       2#Men  |   1.101516   .8381474     1.31   0.189    -.5426876     2.74572
##     2#Women  |  -9.654859   .7472127   -12.92   0.000    -11.12068   -8.189043
##              |
##          age |   .2321863   .0158729    14.63   0.000     .2010482    .2633243
##              |
##      cigsta3 |
##   ex-smoker  |   1.770304   .8655538     2.05   0.041     .0723361    3.468271
##       Never  |  -1.013585   .7438516    -1.36   0.173    -2.472808    .4456378
##              |
##        dnnow |
##         yes  |   2.118908   .6652328     3.19   0.001     .8139127    3.423904
##        _cons |   86.30946   1.019941    84.62   0.000     84.30863    88.31029
## ------------------------------------------------------------------------------
## 
## . 
## . svy: regress wst i.CB age i.cigsta3 i.dnnow if Sex == 1
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      2,004
## Number of PSUs     =     1,055                  Population size   = 2,210.0429
##                                                 Design df         =      1,043
##                                                 F(   5,   1039)   =      35.14
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.1472
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |   1.007916   .8319585     1.21   0.226     -.624587    2.640419
##          age |   .2729095   .0246606    11.07   0.000     .2245195    .3212996
##              |
##      cigsta3 |
##   ex-smoker  |   2.220963   1.246324     1.78   0.075    -.2246258    4.666551
##       Never  |  -.2888131   1.089376    -0.27   0.791    -2.426431    1.848805
##              |
##        dnnow |
##         yes  |   1.321979   1.015162     1.30   0.193    -.6700136    3.313973
##        _cons |   84.01739   1.525234    55.08   0.000     81.02451    87.01027
## ------------------------------------------------------------------------------
## 
## . svy: regress wst i.CB age i.cigsta3 i.dnnow if Sex == 2
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      2,860
## Number of PSUs     =     1,230                  Population size   = 2,312.9309
##                                                 Design df         =      1,218
##                                                 F(   5,   1214)   =      25.13
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.0817
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |   .0698594   .7441777     0.09   0.925    -1.390153    1.529872
##          age |   .1972089   .0197849     9.97   0.000     .1583927    .2360251
##              |
##      cigsta3 |
##   ex-smoker  |   .8837992   1.164231     0.76   0.448    -1.400322     3.16792
##       Never  |  -1.825048   1.008156    -1.81   0.070    -3.802964    .1528668
##              |
##        dnnow |
##         yes  |   2.801683   .8710974     3.22   0.001     1.092665      4.5107
##        _cons |   78.97532   1.246172    63.37   0.000     76.53044     81.4202
## ------------------------------------------------------------------------------

4.2 3by2 multilevel LCA dataset (WC)

## 
## . use "/home/wangcc-me/Downloads/UKDA-6533-stata11_se/stata11_se/CW3CB2_regss.d
## > ta", clear
## 
## . 
## . label define smoking 1 "current" 2 "ex-smoker" 3 "Never"
## 
## . label values cigsta3 smoking
## 
## . label define drinking 1 "no" 2 "yes"
## 
## . label values dnnow drinking
## 
## . label define gender 1 "Men" 2 "Women"
## 
## . label values Sex gender
## 
## . 
## . 
## . svyset area [pweight = wti1to8], strata(gor)
## 
##       pweight: wti1to8
##           VCE: linearized
##   Single unit: missing
##      Strata 1: gor
##          SU 1: area
##         FPC 1: <zero>
## 
## . //svydescribe wti
## . svy: mean wstval
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      4,866
## Number of PSUs   =   1,370        Population size = 4,526.3997
##                                   Design df       =      1,358
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       wstval |   93.14676   .3030883      92.55219    93.74133
## --------------------------------------------------------------
## 
## . svy: mean wstval if CB == 1
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      2,935
## Number of PSUs   =   1,245        Population size = 2,634.0044
##                                   Design df       =      1,233
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       wstval |   92.60728   .3779162      91.86585    93.34871
## --------------------------------------------------------------
## 
## . svy: mean wstval if CB == 2
## (running mean on estimation sample)
## 
## Survey: Mean estimation
## 
## Number of strata =      12        Number of obs   =      1,931
## Number of PSUs   =   1,050        Population size = 1,892.3952
##                                   Design df       =      1,038
## 
## --------------------------------------------------------------
##              |             Linearized
##              |       Mean   Std. Err.     [95% Conf. Interval]
## -------------+------------------------------------------------
##       wstval |   93.89765   .4802864       92.9552    94.84009
## --------------------------------------------------------------
## 
## . 
## . svy: regress wstval i.CB
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      4,866
## Number of PSUs     =     1,370                  Population size   = 4,526.3997
##                                                 Design df         =      1,358
##                                                 F(   1,   1358)   =       4.57
##                                                 Prob > F          =     0.0327
##                                                 R-squared         =     0.0019
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |   1.290361   .6036378     2.14   0.033     .1061974    2.474525
##        _cons |   92.60728   .3783073   244.79   0.000     91.86515    93.34941
## ------------------------------------------------------------------------------
## 
## . svy: regress wstval i.CB age i.Sex i.cigsta3 i.dnnow
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      4,864
## Number of PSUs     =     1,370                  Population size   = 4,522.9738
##                                                 Design df         =      1,358
##                                                 F(   6,   1353)   =     122.68
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.2043
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |   .3030171   .5443727     0.56   0.578    -.7648856     1.37092
##          age |   .2322472   .0159144    14.59   0.000     .2010277    .2634667
##              |
##          Sex |
##       Women  |  -9.974058   .4961632   -20.10   0.000    -10.94739   -9.000728
##              |
##      cigsta3 |
##   ex-smoker  |   1.756207    .867831     2.02   0.043     .0537724    3.458642
##       Never  |  -1.047745   .7458575    -1.40   0.160    -2.510903    .4154127
##              |
##        dnnow |
##         yes  |    2.11752   .6700737     3.16   0.002     .8030285    3.432012
##        _cons |   86.60076    1.03881    83.37   0.000     84.56292    88.63861
## ------------------------------------------------------------------------------
## 
## . svy: regress wstval i.CB#i.Sex age  i.cigsta3 i.dnnow
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      4,864
## Number of PSUs     =     1,370                  Population size   = 4,522.9738
##                                                 Design df         =      1,358
##                                                 F(   7,   1352)   =     106.35
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.2048
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##       CB#Sex |
##     1#Women  |  -9.433292   .6485554   -14.55   0.000    -10.70557   -8.161013
##       2#Men  |   .9544724   .7865362     1.21   0.225    -.5884855     2.49743
##     2#Women  |  -9.772736   .7145914   -13.68   0.000    -11.17456   -8.370913
##              |
##          age |   .2326582   .0158705    14.66   0.000     .2015249    .2637915
##              |
##      cigsta3 |
##   ex-smoker  |   1.779444   .8660151     2.05   0.040     .0805716    3.478317
##       Never  |  -1.023565    .744927    -1.37   0.170    -2.484897    .4377677
##              |
##        dnnow |
##         yes  |    2.11134   .6704899     3.15   0.002     .7960313    3.426648
##        _cons |   86.27719   1.032217    83.58   0.000     84.25228    88.30211
## ------------------------------------------------------------------------------
## 
## . 
## . svy: regress wst i.CB age i.cigsta3 i.dnnow if Sex == 1
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      2,004
## Number of PSUs     =     1,055                  Population size   = 2,210.0429
##                                                 Design df         =      1,043
##                                                 F(   5,   1039)   =      34.97
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.1469
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |   .8469548   .7862104     1.08   0.282    -.6957794    2.389689
##          age |   .2730792   .0246291    11.09   0.000     .2247509    .3214075
##              |
##      cigsta3 |
##   ex-smoker  |   2.228784   1.246717     1.79   0.074    -.2175751    4.675143
##       Never  |  -.3074656   1.094631    -0.28   0.779    -2.455395    1.840464
##              |
##        dnnow |
##         yes  |   1.354839   1.036369     1.31   0.191    -.6787675    3.388445
##        _cons |   84.01157   1.538635    54.60   0.000      80.9924    87.03075
## ------------------------------------------------------------------------------
## 
## . svy: regress wst i.CB age i.cigsta3 i.dnnow if Sex == 2
## (running regress on estimation sample)
## 
## Survey: Linear regression
## 
## Number of strata   =        12                  Number of obs     =      2,860
## Number of PSUs     =     1,230                  Population size   = 2,312.9309
##                                                 Design df         =      1,218
##                                                 F(   5,   1214)   =      25.07
##                                                 Prob > F          =     0.0000
##                                                 R-squared         =     0.0817
## 
## ------------------------------------------------------------------------------
##              |             Linearized
##       wstval |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
## -------------+----------------------------------------------------------------
##         2.CB |  -.1199631   .7232051    -0.17   0.868    -1.538829    1.298903
##          age |   .1977461   .0198613     9.96   0.000       .15878    .2367123
##              |
##      cigsta3 |
##   ex-smoker  |   .8888833   1.165275     0.76   0.446    -1.397286    3.175053
##       Never  |  -1.832319   1.009376    -1.82   0.070    -3.812628    .1479893
##              |
##        dnnow |
##         yes  |    2.76985    .875656     3.16   0.002     1.051889    4.487811
##        _cons |   79.02893   1.242135    63.62   0.000     76.59197    81.46589
## ------------------------------------------------------------------------------