A. Impact on Population Health
#The maximum casualty for a single weather event
max<-max(a$cslty)
max
## [1] 1742
#The weather event with the maximum number of casualty
ev<-a$EVTYPE[which.max(a$cslty)]
ev
## [1] TORNADO
## 977 Levels: ? ABNORMAL WARMTH ABNORMALLY DRY ... WND
The single weather event that has the highest fatality rate is TORNADO with 1742 casualties.
The top 10 casualty-causing severe weather events
g<-group_by(a, EVTYPE)%>%summarize(csum=sum(cslty))
a1<-g[order(-g$csum),]
head(a1$EVTYPE,10)
## [1] TORNADO EXCESSIVE HEAT TSTM WIND
## [4] FLOOD LIGHTNING HEAT
## [7] FLASH FLOOD ICE STORM THUNDERSTORM WIND
## [10] WINTER STORM
## 977 Levels: ? ABNORMAL WARMTH ABNORMALLY DRY ... WND
The top 10 mortality-causing severe weather events
g1<-group_by(a, EVTYPE)%>%summarize(fsum=sum(FATALITIES))
a2<-g1[order(-g1$fsum),]
head(a2$EVTYPE,10)
## [1] TORNADO EXCESSIVE HEAT FLASH FLOOD HEAT
## [5] LIGHTNING TSTM WIND FLOOD RIP CURRENT
## [9] HIGH WIND AVALANCHE
## 977 Levels: ? ABNORMAL WARMTH ABNORMALLY DRY ... WND
The top 10 injury-causing severe weather events
g2<-group_by(a, EVTYPE)%>%summarize(isum=sum(INJURIES))
a3<-g2[order(-g2$isum),]
head(a3$EVTYPE,10)
## [1] TORNADO TSTM WIND FLOOD
## [4] EXCESSIVE HEAT LIGHTNING HEAT
## [7] ICE STORM FLASH FLOOD THUNDERSTORM WIND
## [10] HAIL
## 977 Levels: ? ABNORMAL WARMTH ABNORMALLY DRY ... WND
Weather Events and Casualty Rate Table:
b<-a1[1:10,]
colnames(b)<-c("Event", "Casualty")
kable(b, caption = "Top 10 severe weather events in terms of casualty rate")
Top 10 severe weather events in terms of casualty rate
| TORNADO |
96979 |
| EXCESSIVE HEAT |
8428 |
| TSTM WIND |
7461 |
| FLOOD |
7259 |
| LIGHTNING |
6046 |
| HEAT |
3037 |
| FLASH FLOOD |
2755 |
| ICE STORM |
2064 |
| THUNDERSTORM WIND |
1621 |
| WINTER STORM |
1527 |
B. Economic Consequences
The top 10 weather events causing property damage
g5<-group_by(a, EVTYPE)%>%summarize(psum=sum(propT))
a5<-g5[order(-g5$psum),]
b5<-a5[1:10,]
b5
## # A tibble: 10 x 2
## EVTYPE psum
## <fct> <dbl>
## 1 FLOOD 144657709807
## 2 HURRICANE/TYPHOON 69305840000
## 3 STORM SURGE 43323536000
## 4 HURRICANE 11868319010
## 5 TROPICAL STORM 7703890550
## 6 WINTER STORM 6688497251
## 7 RIVER FLOOD 5118945500
## 8 WILDFIRE 4765114000
## 9 STORM SURGE/TIDE 4641188000
## 10 TSTM WIND 4493028495
The top 10 weather events causing crop damage
g6<-group_by(a, EVTYPE)%>%summarize(crsum=sum(cropT))
a6<-g6[order(-g6$crsum),]
b6<-a6[1:10,]
b6
## # A tibble: 10 x 2
## EVTYPE crsum
## <fct> <dbl>
## 1 DROUGHT 13972566000
## 2 FLOOD 5661968450
## 3 RIVER FLOOD 5029459000
## 4 ICE STORM 5022113500
## 5 HAIL 3025954473
## 6 HURRICANE 2741910000
## 7 HURRICANE/TYPHOON 2607872800
## 8 FLASH FLOOD 1421317100
## 9 EXTREME COLD 1292973000
## 10 FROST/FREEZE 1094086000
The top 10 weather events causing total damage
#Calculate Total Damage
a<-mutate(a, totalDamage= cropT + propT)
g7<-group_by(a, EVTYPE)%>%summarize(tsum=sum(totalDamage))
a7<-g7[order(-g7$tsum),]
b7<-a7[1:10,]
colnames(b7)<-c("Event", "Damage")
kable(b7, caption = "Top 10 severe weather events in terms of Total Damage")
Top 10 severe weather events in terms of Total Damage
| FLOOD |
150319678257 |
| HURRICANE/TYPHOON |
71913712800 |
| STORM SURGE |
43323541000 |
| DROUGHT |
15018672000 |
| HURRICANE |
14610229010 |
| RIVER FLOOD |
10148404500 |
| ICE STORM |
8967041360 |
| TROPICAL STORM |
8382236550 |
| WINTER STORM |
6715441251 |
| WILDFIRE |
5060586800 |
gg<-ggplot(b7, aes(Event, Damage/1000000))
gg+geom_point(size=3 ,color="red")+labs(x="event", y="Damage Cost in US milloin Dollars")+theme(axis.text.x = element_text(color="black", size=8, angle=30))

The top 10 damage cost caused by weather events for both crop damage and property damage (Number in milion dollars).