rm(list=ls(all=T))
options(digits=4, scipen=12)
library(dplyr)
library(ggplot2)
library(maps)
library(ggmap)
library(reshape2)

7.3 加強基本圖表

library(ggplot2)
# Load our data, which lives in intl.csv
intl = read.csv("data/intl.csv")
str(intl)
'data.frame':   8 obs. of  2 variables:
 $ Region       : Factor w/ 8 levels "Africa","Asia",..: 2 3 6 4 5 1 7 8
 $ PercentOfIntl: num  0.531 0.201 0.098 0.09 0.054 0.02 0.015 0.002
7.3.1 Bar Plot with Quantities
# We want to make a bar plot with region on the X axis
# and Percentage on the y-axis.
ggplot(intl, aes(x=Region, y=PercentOfIntl)) +
  geom_bar(stat="identity") +
  geom_text(aes(label=PercentOfIntl))

7.3.2 Reorder by Column
# Make Region an ordered factor
# We can do this with the re-order command and transform command. 
intl = transform(intl, Region = reorder(Region, -PercentOfIntl))
# Make the percentages out of 100 instead of fractions
intl$PercentOfIntl = intl$PercentOfIntl * 100
# Make the plot
ggplot(intl, aes(x=Region, y=PercentOfIntl)) +
  geom_bar(stat="identity", fill="dark blue") +
  geom_text(aes(label=PercentOfIntl), vjust=-0.4) +
  ylab("Percent of International Students") +
  theme(axis.title.x = element_blank(), 
        axis.text.x = element_text(angle = 45, hjust = 1))



7.3 全球國際學生數量

7.3.3 Data for Intl’ Students
library(ggmap)
# Load in the international student data
intlall = read.csv("data/intlall.csv",stringsAsFactors=FALSE)
# Lets look at the first few rows
# head(intlall)
# Those NAs are really 0s, and we can replace them easily
intlall[is.na(intlall)] = 0
# Now lets look again
head(intlall) 
          Citizenship UG  G SpecialUG SpecialG ExhangeVisiting Total
1             Albania  3  1         0        0               0     4
2 Antigua and Barbuda  0  0         0        1               0     1
3           Argentina  0 19         0        0               0    19
4             Armenia  3  2         0        0               0     5
5           Australia  6 32         0        0               1    39
6             Austria  0 11         0        0               5    16
7.3.4 World Map
# Load the world map
world_map = map_data("world")
str(world_map)
'data.frame':   99338 obs. of  6 variables:
 $ long     : num  -69.9 -69.9 -69.9 -70 -70.1 ...
 $ lat      : num  12.5 12.4 12.4 12.5 12.5 ...
 $ group    : num  1 1 1 1 1 1 1 1 1 1 ...
 $ order    : int  1 2 3 4 5 6 7 8 9 10 ...
 $ region   : chr  "Aruba" "Aruba" "Aruba" "Aruba" ...
 $ subregion: chr  NA NA NA NA ...
7.3.5 Merge Map with Data
# Lets merge intlall into world_map using the merge command
world_map = merge(world_map, intlall, by.x ="region", by.y = "Citizenship")
str(world_map)
'data.frame':   63634 obs. of  12 variables:
 $ region         : chr  "Albania" "Albania" "Albania" "Albania" ...
 $ long           : num  20.5 20.4 19.5 20.5 20.4 ...
 $ lat            : num  41.3 39.8 42.5 40.1 41.5 ...
 $ group          : num  6 6 6 6 6 6 6 6 6 6 ...
 $ order          : int  789 822 870 815 786 821 818 779 879 795 ...
 $ subregion      : chr  NA NA NA NA ...
 $ UG             : num  3 3 3 3 3 3 3 3 3 3 ...
 $ G              : num  1 1 1 1 1 1 1 1 1 1 ...
 $ SpecialUG      : num  0 0 0 0 0 0 0 0 0 0 ...
 $ SpecialG       : num  0 0 0 0 0 0 0 0 0 0 ...
 $ ExhangeVisiting: num  0 0 0 0 0 0 0 0 0 0 ...
 $ Total          : int  4 4 4 4 4 4 4 4 4 4 ...
7.3.6 Plot the Map
ggplot(world_map, aes(x=long, y=lat, group=group)) +
  geom_polygon(fill="white", color="black") +
  coord_map("mercator")

7.3.7 Polygon points need to be ordered by Group
# Reorder the data
world_map = world_map[order(world_map$group, world_map$order),]
# Redo the plot
ggplot(world_map, aes(x=long, y=lat, group=group)) +
  geom_polygon(fill="white", color="black")

  # + coord_map("mercator")
7.3.8 Identify and Fix Mismatchs between Map and Data
# Lets look for China
grep("China", intlall$Citizenship, ignore.case=T, value=T) 
[1] "China (People's Republic Of)"
grep("China", unique(map_data("world")$region), ignore.case=T, value=T) 
[1] "China"
# Lets "fix" that in the intlall dataset
intlall$Citizenship[intlall$Citizenship=="China (People's Republic Of)"] = 
  "China"
# We'll repeat our merge and order from before
world_map = merge(map_data("world"), intlall, 
                  by.x ="region",
                  by.y = "Citizenship")
world_map = world_map[order(world_map$group, world_map$order),]
ggplot(world_map, aes(x=long, y=lat, group=group)) +
  geom_polygon(aes(fill=Total), color="black") #+

  #coord_map("mercator")
7.3.9 Different Orientations
# We can try other projections - this one is visually interesting
ggplot(world_map, aes(x=long, y=lat, group=group)) +
  geom_polygon(aes(fill=Total), color="black") +
  coord_map("ortho", orientation=c(20, 30, 0))

ggplot(world_map, aes(x=long, y=lat, group=group)) +
  geom_polygon(aes(fill=Total), color="black") +
  coord_map("ortho", orientation=c(-37, 175, 0))



7.3 資料結構轉換

7.3.10 Reshaping before Ploting
library(ggplot2)
library(reshape2)
# Now lets load our dataframe
households = read.csv("data/households.csv")
str(households)
'data.frame':   8 obs. of  7 variables:
 $ Year          : int  1970 1980 1990 1995 2000 2005 2010 2012
 $ MarriedWChild : num  40.3 30.9 26.3 25.5 24.1 22.9 20.9 19.6
 $ MarriedWOChild: num  30.3 29.9 29.8 28.9 28.7 28.3 28.8 29.1
 $ OtherFamily   : num  10.6 12.9 14.8 15.6 16 16.7 17.4 17.8
 $ MenAlone      : num  5.6 8.6 9.7 10.2 10.7 11.3 11.9 12.3
 $ WomenAlone    : num  11.5 14 14.9 14.7 14.8 15.3 14.8 15.2
 $ OtherNonfamily: num  1.7 3.6 4.6 5 5.7 5.6 6.2 6.1
# Plot it
melt(households, id="Year") %>% 
  ggplot(aes(x=Year, y=value, color=variable)) +
  geom_line(size=2) + geom_point(size=5) +  
  ylab("Percentage of Households")








LS0tDQp0aXRsZTogIkFTNy0wQyDkuJbnlYzlnLDlnJYiDQphdXRob3I6ICLljZPpm43nhLYgRDk5NDAxMDAwMSwgMjAxOC8wNy8yNSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCjxicj4NCg0KYGBge3IgZWNobz1ULCBtZXNzYWdlPUYsIGNhY2hlPUYsIHdhcm5pbmc9Rn0NCnJtKGxpc3Q9bHMoYWxsPVQpKQ0Kb3B0aW9ucyhkaWdpdHM9NCwgc2NpcGVuPTEyKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkobWFwcykNCmxpYnJhcnkoZ2dtYXApDQpsaWJyYXJ5KHJlc2hhcGUyKQ0KYGBgDQoNCi0gLSAtDQoNCiMjIyA3LjMg5Yqg5by35Z+65pys5ZyW6KGoDQoNCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KDQojIExvYWQgb3VyIGRhdGEsIHdoaWNoIGxpdmVzIGluIGludGwuY3N2DQppbnRsID0gcmVhZC5jc3YoImRhdGEvaW50bC5jc3YiKQ0Kc3RyKGludGwpDQpgYGANCg0KIyMjIyMgNy4zLjEgQmFyIFBsb3Qgd2l0aCBRdWFudGl0aWVzDQpgYGB7cn0NCiMgV2Ugd2FudCB0byBtYWtlIGEgYmFyIHBsb3Qgd2l0aCByZWdpb24gb24gdGhlIFggYXhpcw0KIyBhbmQgUGVyY2VudGFnZSBvbiB0aGUgeS1heGlzLg0KZ2dwbG90KGludGwsIGFlcyh4PVJlZ2lvbiwgeT1QZXJjZW50T2ZJbnRsKSkgKw0KICBnZW9tX2JhcihzdGF0PSJpZGVudGl0eSIpICsNCiAgZ2VvbV90ZXh0KGFlcyhsYWJlbD1QZXJjZW50T2ZJbnRsKSkNCmBgYA0KDQojIyMjIyA3LjMuMiBSZW9yZGVyIGJ5IENvbHVtbg0KYGBge3J9DQojIE1ha2UgUmVnaW9uIGFuIG9yZGVyZWQgZmFjdG9yDQojIFdlIGNhbiBkbyB0aGlzIHdpdGggdGhlIHJlLW9yZGVyIGNvbW1hbmQgYW5kIHRyYW5zZm9ybSBjb21tYW5kLiANCmludGwgPSB0cmFuc2Zvcm0oaW50bCwgUmVnaW9uID0gcmVvcmRlcihSZWdpb24sIC1QZXJjZW50T2ZJbnRsKSkNCg0KIyBNYWtlIHRoZSBwZXJjZW50YWdlcyBvdXQgb2YgMTAwIGluc3RlYWQgb2YgZnJhY3Rpb25zDQppbnRsJFBlcmNlbnRPZkludGwgPSBpbnRsJFBlcmNlbnRPZkludGwgKiAxMDANCg0KIyBNYWtlIHRoZSBwbG90DQpnZ3Bsb3QoaW50bCwgYWVzKHg9UmVnaW9uLCB5PVBlcmNlbnRPZkludGwpKSArDQogIGdlb21fYmFyKHN0YXQ9ImlkZW50aXR5IiwgZmlsbD0iZGFyayBibHVlIikgKw0KICBnZW9tX3RleHQoYWVzKGxhYmVsPVBlcmNlbnRPZkludGwpLCB2anVzdD0tMC40KSArDQogIHlsYWIoIlBlcmNlbnQgb2YgSW50ZXJuYXRpb25hbCBTdHVkZW50cyIpICsNCiAgdGhlbWUoYXhpcy50aXRsZS54ID0gZWxlbWVudF9ibGFuaygpLCANCiAgICAgICAgYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoYW5nbGUgPSA0NSwgaGp1c3QgPSAxKSkNCmBgYA0KPGJyPg0KDQotIC0gLQ0KDQojIyMgNy4zIOWFqOeQg+Wci+mam+WtuOeUn+aVuOmHjw0KDQojIyMjIyA3LjMuMyBEYXRhIGZvciBJbnRsJyBTdHVkZW50cw0KYGBge3J9DQpsaWJyYXJ5KGdnbWFwKQ0KDQojIExvYWQgaW4gdGhlIGludGVybmF0aW9uYWwgc3R1ZGVudCBkYXRhDQppbnRsYWxsID0gcmVhZC5jc3YoImRhdGEvaW50bGFsbC5jc3YiLHN0cmluZ3NBc0ZhY3RvcnM9RkFMU0UpDQoNCiMgTGV0cyBsb29rIGF0IHRoZSBmaXJzdCBmZXcgcm93cw0KIyBoZWFkKGludGxhbGwpDQoNCiMgVGhvc2UgTkFzIGFyZSByZWFsbHkgMHMsIGFuZCB3ZSBjYW4gcmVwbGFjZSB0aGVtIGVhc2lseQ0KaW50bGFsbFtpcy5uYShpbnRsYWxsKV0gPSAwDQoNCiMgTm93IGxldHMgbG9vayBhZ2Fpbg0KaGVhZChpbnRsYWxsKSANCmBgYA0KDQojIyMjIyA3LjMuNCBXb3JsZCBNYXANCmBgYHtyfQ0KIyBMb2FkIHRoZSB3b3JsZCBtYXANCndvcmxkX21hcCA9IG1hcF9kYXRhKCJ3b3JsZCIpDQpzdHIod29ybGRfbWFwKQ0KYGBgDQoNCiMjIyMjIDcuMy41IE1lcmdlIE1hcCB3aXRoIERhdGENCmBgYHtyfQ0KIyBMZXRzIG1lcmdlIGludGxhbGwgaW50byB3b3JsZF9tYXAgdXNpbmcgdGhlIG1lcmdlIGNvbW1hbmQNCndvcmxkX21hcCA9IG1lcmdlKHdvcmxkX21hcCwgaW50bGFsbCwgYnkueCA9InJlZ2lvbiIsIGJ5LnkgPSAiQ2l0aXplbnNoaXAiKQ0Kc3RyKHdvcmxkX21hcCkNCmBgYA0KDQojIyMjIyA3LjMuNiBQbG90IHRoZSBNYXANCmBgYHtyfQ0KZ2dwbG90KHdvcmxkX21hcCwgYWVzKHg9bG9uZywgeT1sYXQsIGdyb3VwPWdyb3VwKSkgKw0KICBnZW9tX3BvbHlnb24oZmlsbD0id2hpdGUiLCBjb2xvcj0iYmxhY2siKSArDQogIGNvb3JkX21hcCgibWVyY2F0b3IiKQ0KYGBgDQoNCiMjIyMjIDcuMy43IFBvbHlnb24gcG9pbnRzIG5lZWQgdG8gYmUgb3JkZXJlZCBieSBHcm91cA0KYGBge3J9DQojIFJlb3JkZXIgdGhlIGRhdGENCndvcmxkX21hcCA9IHdvcmxkX21hcFtvcmRlcih3b3JsZF9tYXAkZ3JvdXAsIHdvcmxkX21hcCRvcmRlciksXQ0KDQojIFJlZG8gdGhlIHBsb3QNCmdncGxvdCh3b3JsZF9tYXAsIGFlcyh4PWxvbmcsIHk9bGF0LCBncm91cD1ncm91cCkpICsNCiAgZ2VvbV9wb2x5Z29uKGZpbGw9IndoaXRlIiwgY29sb3I9ImJsYWNrIikNCiAgIyArIGNvb3JkX21hcCgibWVyY2F0b3IiKQ0KYGBgDQoNCiMjIyMjIDcuMy44IElkZW50aWZ5IGFuZCBGaXggTWlzbWF0Y2hzIGJldHdlZW4gTWFwIGFuZCBEYXRhDQpgYGB7cn0NCiMgTGV0cyBsb29rIGZvciBDaGluYQ0KZ3JlcCgiQ2hpbmEiLCBpbnRsYWxsJENpdGl6ZW5zaGlwLCBpZ25vcmUuY2FzZT1ULCB2YWx1ZT1UKSANCmdyZXAoIkNoaW5hIiwgdW5pcXVlKG1hcF9kYXRhKCJ3b3JsZCIpJHJlZ2lvbiksIGlnbm9yZS5jYXNlPVQsIHZhbHVlPVQpIA0KYGBgDQoNCmBgYHtyfQ0KIyBMZXRzICJmaXgiIHRoYXQgaW4gdGhlIGludGxhbGwgZGF0YXNldA0KaW50bGFsbCRDaXRpemVuc2hpcFtpbnRsYWxsJENpdGl6ZW5zaGlwPT0iQ2hpbmEgKFBlb3BsZSdzIFJlcHVibGljIE9mKSJdID0gDQogICJDaGluYSINCg0KIyBXZSdsbCByZXBlYXQgb3VyIG1lcmdlIGFuZCBvcmRlciBmcm9tIGJlZm9yZQ0Kd29ybGRfbWFwID0gbWVyZ2UobWFwX2RhdGEoIndvcmxkIiksIGludGxhbGwsIA0KICAgICAgICAgICAgICAgICAgYnkueCA9InJlZ2lvbiIsDQogICAgICAgICAgICAgICAgICBieS55ID0gIkNpdGl6ZW5zaGlwIikNCndvcmxkX21hcCA9IHdvcmxkX21hcFtvcmRlcih3b3JsZF9tYXAkZ3JvdXAsIHdvcmxkX21hcCRvcmRlciksXQ0KDQpnZ3Bsb3Qod29ybGRfbWFwLCBhZXMoeD1sb25nLCB5PWxhdCwgZ3JvdXA9Z3JvdXApKSArDQogIGdlb21fcG9seWdvbihhZXMoZmlsbD1Ub3RhbCksIGNvbG9yPSJibGFjayIpICMrDQogICNjb29yZF9tYXAoIm1lcmNhdG9yIikNCmBgYA0KDQojIyMjIyA3LjMuOSBEaWZmZXJlbnQgT3JpZW50YXRpb25zDQpgYGB7cn0NCiMgV2UgY2FuIHRyeSBvdGhlciBwcm9qZWN0aW9ucyAtIHRoaXMgb25lIGlzIHZpc3VhbGx5IGludGVyZXN0aW5nDQpnZ3Bsb3Qod29ybGRfbWFwLCBhZXMoeD1sb25nLCB5PWxhdCwgZ3JvdXA9Z3JvdXApKSArDQogIGdlb21fcG9seWdvbihhZXMoZmlsbD1Ub3RhbCksIGNvbG9yPSJibGFjayIpICsNCiAgY29vcmRfbWFwKCJvcnRobyIsIG9yaWVudGF0aW9uPWMoMjAsIDMwLCAwKSkNCmBgYA0KDQpgYGB7cn0NCmdncGxvdCh3b3JsZF9tYXAsIGFlcyh4PWxvbmcsIHk9bGF0LCBncm91cD1ncm91cCkpICsNCiAgZ2VvbV9wb2x5Z29uKGFlcyhmaWxsPVRvdGFsKSwgY29sb3I9ImJsYWNrIikgKw0KICBjb29yZF9tYXAoIm9ydGhvIiwgb3JpZW50YXRpb249YygtMzcsIDE3NSwgMCkpDQpgYGANCjxicj4NCg0KLSAtIC0NCg0KIyMjIDcuMyDos4fmlpnntZDmp4vovYnmj5sNCg0KIyMjIyMgNy4zLjEwIFJlc2hhcGluZyBiZWZvcmUgUGxvdGluZw0KYGBge3J9DQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KHJlc2hhcGUyKQ0KIyBOb3cgbGV0cyBsb2FkIG91ciBkYXRhZnJhbWUNCmhvdXNlaG9sZHMgPSByZWFkLmNzdigiZGF0YS9ob3VzZWhvbGRzLmNzdiIpDQpzdHIoaG91c2Vob2xkcykNCmBgYA0KDQpgYGB7cn0NCiMgUGxvdCBpdA0KbWVsdChob3VzZWhvbGRzLCBpZD0iWWVhciIpICU+JSANCiAgZ2dwbG90KGFlcyh4PVllYXIsIHk9dmFsdWUsIGNvbG9yPXZhcmlhYmxlKSkgKw0KICBnZW9tX2xpbmUoc2l6ZT0yKSArIGdlb21fcG9pbnQoc2l6ZT01KSArICANCiAgeWxhYigiUGVyY2VudGFnZSBvZiBIb3VzZWhvbGRzIikNCmBgYA0KPGJyPg0KDQotIC0gLQ0KDQo8YnI+PGJyPjxicj48YnI+PGJyPg0KDQo8c3R5bGU+DQouY2FwdGlvbiB7DQogIGNvbG9yOiAjNzc3Ow0KICBtYXJnaW4tdG9wOiAxMHB4Ow0KfQ0KcCBjb2RlIHsNCiAgd2hpdGUtc3BhY2U6IGluaGVyaXQ7DQp9DQpwcmUgew0KICB3b3JkLWJyZWFrOiBub3JtYWw7DQogIHdvcmQtd3JhcDogbm9ybWFsOw0KICBsaW5lLWhlaWdodDogMTsNCn0NCnByZSBjb2RlIHsNCiAgd2hpdGUtc3BhY2U6IGluaGVyaXQ7DQp9DQpwLGxpIHsNCiAgZm9udC1mYW1pbHk6ICJUcmVidWNoZXQgTVMiLCAi5b6u6Luf5q2j6buR6auUIiwgIk1pY3Jvc29mdCBKaGVuZ0hlaSI7DQp9DQoNCi5yew0KICBsaW5lLWhlaWdodDogMS4yOw0KfQ0KDQp0aXRsZXsNCiAgY29sb3I6ICNjYzAwMDA7DQogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOw0KfQ0KDQpib2R5ew0KICBmb250LWZhbWlseTogIlRyZWJ1Y2hldCBNUyIsICLlvq7ou5/mraPpu5Hpq5QiLCAiTWljcm9zb2Z0IEpoZW5nSGVpIjsNCn0NCg0KaDEsaDIsaDMsaDQsaDV7DQogIGNvbG9yOiAjMDA4ODAwOw0KICBmb250LWZhbWlseTogIlRyZWJ1Y2hldCBNUyIsICLlvq7ou5/mraPpu5Hpq5QiLCAiTWljcm9zb2Z0IEpoZW5nSGVpIjsNCn0NCg0KaDN7DQogIGNvbG9yOiAjYjM2YjAwOw0KICBiYWNrZ3JvdW5kOiAjZmZlMGIzOw0KICBsaW5lLWhlaWdodDogMjsNCiAgZm9udC13ZWlnaHQ6IGJvbGQ7DQp9DQoNCmg1ew0KICBjb2xvcjogIzAwNjAwMDsNCiAgYmFja2dyb3VuZDogI2ZmZmZlMDsNCiAgbGluZS1oZWlnaHQ6IDI7DQogIGZvbnQtd2VpZ2h0OiBib2xkOw0KfQ0KDQplbXsNCiAgY29sb3I6ICMwMDAwYzA7DQogIGJhY2tncm91bmQ6ICNmMGYwZjA7DQogIH0NCjwvc3R5bGU+DQoNCg==