主要議題:使用普查資料預測收入

學習重點:

rm(list=ls(all=T))
options(digits=4, scipen=12)
library(dplyr)
library(rpart)
library(rpart.plot)
library(caret)
library(randomForest)
library(caTools)
source('DPP.R')

1 邏輯式回歸模型

1.1 整理資料、建立模型
census=  read.csv('data/census.csv')

Let’s begin by building a logistic regression model to predict whether an individual’s earnings are above $50,000 (the variable “over50k”) using all of the other variables as independent variables. First, read the dataset census.csv into R.

Then, split the data randomly into a training set and a testing set, setting the seed to 2000 before creating the split. Split the data so that the training set contains 60% of the observations, while the testing set contains 40% of the observations.

Next, build a logistic regression model to predict the dependent variable “over50k”, using all of the other variables in the dataset as independent variables. Use the training set to build the model.

Which variables are significant, or have factors that are significant? (Use 0.1 as your significance threshold, so variables with a period or dot in the stars column should be counted too. You might see a warning message here - you can ignore it and proceed. This message is a warning that we might be overfitting our model to the training set.) Select all that apply.

set.seed(2000)
spl = sample.split(census$over50k, SplitRatio = 0.6)
censusTrain = subset(census,spl )
censusTest = subset(census, !spl)
glm1 = glm(over50k ~ ., censusTrain, family=binomial)
glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(glm1)

Call:
glm(formula = over50k ~ ., family = binomial, data = censusTrain)

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-5.107  -0.504  -0.180  -0.001   3.338  

Coefficients: (1 not defined because of singularities)
                                             Estimate   Std. Error z value          Pr(>|z|)    
(Intercept)                                -8.6580686    1.3788706   -6.28 0.000000000340535 ***
age                                         0.0254838    0.0021386   11.92           < 2e-16 ***
workclass Federal-gov                       1.1054468    0.2013806    5.49 0.000000040343445 ***
workclass Local-gov                         0.3674591    0.1821340    2.02           0.04364 *  
workclass Never-worked                    -12.8346355  845.2523702   -0.02           0.98789    
workclass Private                           0.6011672    0.1625780    3.70           0.00022 ***
workclass Self-emp-inc                      0.7575120    0.1950482    3.88           0.00010 ***
workclass Self-emp-not-inc                  0.1855059    0.1773792    1.05           0.29565    
workclass State-gov                         0.4012276    0.1960758    2.05           0.04073 *  
workclass Without-pay                     -13.9465612  659.7417182   -0.02           0.98313    
education 11th                              0.2224997    0.2867198    0.78           0.43774    
education 12th                              0.6380314    0.3596574    1.77           0.07606 .  
education 1st-4th                          -0.7075223    0.7759998   -0.91           0.36190    
education 5th-6th                          -0.3169764    0.4880227   -0.65           0.51601    
education 7th-8th                          -0.3498391    0.3126433   -1.12           0.26315    
education 9th                              -0.1258224    0.3539479   -0.36           0.72223    
education Assoc-acdm                        1.6018145    0.2426784    6.60 0.000000000040960 ***
education Assoc-voc                         1.5407709    0.2368386    6.51 0.000000000077398 ***
education Bachelors                         2.1771055    0.2217585    9.82           < 2e-16 ***
education Doctorate                         2.7609054    0.2892933    9.54           < 2e-16 ***
education HS-grad                           1.0059548    0.2168943    4.64 0.000003518059170 ***
education Masters                           2.4209952    0.2353036   10.29           < 2e-16 ***
education Preschool                       -22.3738158  686.3835140   -0.03           0.97400    
education Prof-school                       2.9379640    0.2752976   10.67           < 2e-16 ***
education Some-college                      1.3651010    0.2194962    6.22 0.000000000499549 ***
maritalstatus Married-AF-spouse             2.5398125    0.7144642    3.55           0.00038 ***
maritalstatus Married-civ-spouse            2.4577534    0.3572546    6.88 0.000000000006004 ***
maritalstatus Married-spouse-absent        -0.0948616    0.3203725   -0.30           0.76716    
maritalstatus Never-married                -0.4514599    0.1139338   -3.96 0.000074177081437 ***
maritalstatus Separated                     0.0360919    0.1984310    0.18           0.85567    
maritalstatus Widowed                       0.1858398    0.1961635    0.95           0.34345    
occupation Adm-clerical                     0.0947036    0.1287693    0.74           0.46206    
occupation Armed-Forces                    -1.0075457    1.4874332   -0.68           0.49817    
occupation Craft-repair                     0.2173818    0.1108975    1.96           0.04997 *  
occupation Exec-managerial                  0.9400239    0.1138446    8.26           < 2e-16 ***
occupation Farming-fishing                 -1.0682985    0.1907972   -5.60 0.000000021542855 ***
occupation Handlers-cleaners               -0.6236839    0.1946320   -3.20           0.00135 ** 
occupation Machine-op-inspct               -0.1861551    0.1375888   -1.35           0.17606    
occupation Other-service                   -0.8183427    0.1641061   -4.99 0.000000614290460 ***
occupation Priv-house-serv                -12.9680365  226.7111870   -0.06           0.95439    
occupation Prof-specialty                   0.6331276    0.1222333    5.18 0.000000222286503 ***
occupation Protective-serv                  0.6267195    0.1710320    3.66           0.00025 ***
occupation Sales                            0.3276305    0.1174584    2.79           0.00528 ** 
occupation Tech-support                     0.6172622    0.1532519    4.03 0.000056310004688 ***
occupation Transport-moving                        NA           NA      NA                NA    
relationship Not-in-family                  0.7881330    0.3529788    2.23           0.02556 *  
relationship Other-relative                -0.2194104    0.3136846   -0.70           0.48426    
relationship Own-child                     -0.7488937    0.3506796   -2.14           0.03272 *  
relationship Unmarried                      0.7040592    0.3719778    1.89           0.05839 .  
relationship Wife                           1.3235292    0.1331228    9.94           < 2e-16 ***
race Asian-Pac-Islander                     0.4829511    0.3548419    1.36           0.17350    
race Black                                  0.3644091    0.2881529    1.26           0.20600    
race Other                                  0.2204231    0.4513125    0.49           0.62526    
race White                                  0.4107806    0.2736717    1.50           0.13336    
sex Male                                    0.7729257    0.1024396    7.55 0.000000000000045 ***
capitalgain                                 0.0003280    0.0000137   23.90           < 2e-16 ***
capitalloss                                 0.0006445    0.0000485   13.28           < 2e-16 ***
hoursperweek                                0.0289687    0.0021006   13.79           < 2e-16 ***
nativecountry Canada                        0.2592983    1.3081815    0.20           0.84288    
nativecountry China                        -0.9694567    1.3273303   -0.73           0.46516    
nativecountry Columbia                     -1.9536188    1.5260114   -1.28           0.20047    
nativecountry Cuba                          0.0573462    1.3232329    0.04           0.96543    
nativecountry Dominican-Republic          -14.3541804  309.1918510   -0.05           0.96297    
nativecountry Ecuador                      -0.0355005    1.4773834   -0.02           0.98083    
nativecountry El-Salvador                  -0.6094544    1.3949399   -0.44           0.66218    
nativecountry England                      -0.0670676    1.3268340   -0.05           0.95969    
nativecountry France                        0.5300878    1.4185608    0.37           0.70864    
nativecountry Germany                       0.0547429    1.3062787    0.04           0.96657    
nativecountry Greece                       -2.6462729    1.7136241   -1.54           0.12253    
nativecountry Guatemala                   -12.9256999  334.5490941   -0.04           0.96918    
nativecountry Haiti                        -0.9221282    1.6153771   -0.57           0.56811    
nativecountry Holand-Netherlands          -12.8233705 2399.5450821   -0.01           0.99574    
nativecountry Honduras                     -0.9584148    3.4117488   -0.28           0.77877    
nativecountry Hong                         -0.2362308    1.4915130   -0.16           0.87415    
nativecountry Hungary                       0.1412328    1.5554598    0.09           0.92765    
nativecountry India                        -0.8218220    1.3139233   -0.63           0.53166    
nativecountry Iran                         -0.0329858    1.3660665   -0.02           0.98074    
nativecountry Ireland                       0.1578963    1.4728709    0.11           0.91463    
nativecountry Italy                         0.6100024    1.3328606    0.46           0.64719    
nativecountry Jamaica                      -0.2279150    1.3868928   -0.16           0.86947    
nativecountry Japan                         0.5072432    1.3748989    0.37           0.71218    
nativecountry Laos                         -0.6830937    1.6608892   -0.41           0.68087    
nativecountry Mexico                       -0.9181782    1.3032487   -0.70           0.48110    
nativecountry Nicaragua                    -0.1986816    1.5072985   -0.13           0.89513    
nativecountry Outlying-US(Guam-USVI-etc)  -13.7304783  850.1773422   -0.02           0.98711    
nativecountry Peru                         -0.9659994    1.6778652   -0.58           0.56480    
nativecountry Philippines                   0.0439341    1.2809516    0.03           0.97264    
nativecountry Poland                        0.2410229    1.3827481    0.17           0.86162    
nativecountry Portugal                      0.7275811    1.4771572    0.49           0.62233    
nativecountry Puerto-Rico                  -0.5768595    1.3573180   -0.42           0.67084    
nativecountry Scotland                     -1.1875885    1.7188532   -0.69           0.48962    
nativecountry South                        -0.8182850    1.3412764   -0.61           0.54181    
nativecountry Taiwan                       -0.2590169    1.3502647   -0.19           0.84788    
nativecountry Thailand                     -1.6932131    1.7370523   -0.97           0.32968    
nativecountry Trinadad&Tobago              -1.3461940    1.7210641   -0.78           0.43410    
nativecountry United-States                -0.0859373    1.2692747   -0.07           0.94602    
nativecountry Vietnam                      -1.0084987    1.5227937   -0.66           0.50780    
nativecountry Yugoslavia                    1.4017916    1.6475929    0.85           0.39487    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 21175  on 19186  degrees of freedom
Residual deviance: 12104  on 19090  degrees of freedom
AIC: 12298

Number of Fisher Scoring iterations: 15
"除了Age跟nativecountry其他自變數內的細項或多或少都對over50k有影響"
[1] "除了Age跟nativecountry其他自變數內的細項或多或少都對over50k有影響"
1.2 Test Accuracy

What is the accuracy of the model on the testing set? Use a threshold of 0.5.

p.glm = pred = predict(glm1, censusTest, 'response')
prediction from a rank-deficient fit may be misleading
table(censusTest$over50k, pred > 0.5)
        
         FALSE TRUE
   <=50K  9051  662
   >50K   1190 1888
table(censusTest$over50k, pred > 0.5) %>% {sum(diag(.))/sum(.)}   #%>%將左側的運算結果傳至右側函數的第一個參數
[1] 0.8552
# sum(diag(table(censusTest$over50k, pred > 0.5)))/sum(table(censusTest$over50k, pred > 0.5))
1.3 Baseline Accuracy

What is the baseline accuracy for the testing set?

table(censusTest$over50k)

 <=50K   >50K 
  9713   3078 
mean(censusTest$over50k == " <=50K") #選擇最常見的結果
[1] 0.7594
#9713/(9713+3078)
1.4 Test AUC

What is the area-under-the-curve (AUC) for this model on the test set?

colAUC(pred, censusTest$over50k)
                   [,1]
 <=50K vs.  >50K 0.9062
#0.9062



2. 決策樹模型

2.1 CART Model

We have just seen how the logistic regression model for this data achieves a high accuracy. Moreover, the significances of the variables give us a way to gauge which variables are relevant for this prediction task. However, it is not immediately clear which variables are more important than the others, especially due to the large number of factor variables in this problem.

Let us now build a classification tree to predict “over50k”. Use the training set to build the model, and all of the other variables as independent variables. Use the default parameters, so don’t set a value for minbucket or cp. Remember to specify method=“class” as an argument to rpart, since this is a classification problem. After you are done building the model, plot the resulting tree.

How many splits does the tree have in total?

cart1 = rpart(over50k ~ ., censusTrain, method='class')
prp(cart1)

#4個分裂
2.2 決策(樹中使用的預測)變數

Which variable does the tree split on at the first level (the very first split of the tree)?

  • relationship


2.3 決策變數

Which variables does the tree split on at the second level (immediately after the first split of the tree)? Select all that apply.

  • education
  • capitalgain


2.4 Test Accuracy

What is the accuracy of the model on the testing set? Use a threshold of 0.5. (You can either add the argument type=“class”, or generate probabilities and use a threshold of 0.5 like in logistic regression.)

p.cart = pred = predict(cart1, censusTest)[,2]   #1:<=50k  2:>50K
test=predict(cart1,censusTest,type = "class")    
table(censusTest$over50k,test)
        test
          <=50K  >50K
   <=50K   9243   470
   >50K    1482  1596
table(censusTest$over50k, pred > 0.5)
        
         FALSE TRUE
   <=50K  9243  470
   >50K   1482 1596
table(censusTest$over50k, pred > 0.5) %>% {sum(diag(.))/sum(.)} # 0.8474
[1] 0.8474
2.5 ROC Comparison

Let us now consider the ROC curve and AUC for the CART model on the test set. You will need to get predicted probabilities for the observations in the test set to build the ROC curve and compute the AUC. Remember that you can do this by removing the type=“class” argument when making predictions, and taking the second column of the resulting object.

Plot the ROC curve for the CART model you have estimated. Observe that compared to the logistic regression ROC curve, the CART ROC curve is less smooth than the logistic regression ROC curve. Which of the following explanations for this behavior is most correct? (HINT: Think about what the ROC curve is plotting and what changing the threshold does.)

par(cex=0.8)
colAUC(cbind(p.glm, p.cart), censusTest$over50k, T)  #將glm跟cart的圖畫在一起  輸出即為面積值
                  p.glm p.cart
 <=50K vs.  >50K 0.9062  0.847

2.6 AUC & DPP Comparison

What is the AUC of the CART model on the test set?

par(cex=0.8)
auc.glm  = DPP(p.glm,  censusTest$over50k, " >50K")  #DPP(預測值,Y軸個數,是否>50K)

par(cex=0.8)
auc.cart = DPP(p.cart, censusTest$over50k, " >50K")


glm與cart之間的差異:DPP與ROC的圖,glm較像連續的圖,cart則為不連續 可能的原因是cart為決策樹,每一個葉節點有著許多的點,代表在這個條件下,這些點被成功預測的機率 - - -

3 Random Forest 模型

Problem 3.1 減少訓練資料量

Before building a random forest model, we’ll down-sample our training set. While some modern personal computers can build a random forest model on the entire training set, others might run out of memory when trying to train the model since random forests is much more computationally intensive than CART or Logistic Regression. For this reason, before continuing we will define a new training set to be used when building our random forest model, that contains 2000 randomly selected obervations from the original training set. Do this by running the following commands in your R console (assuming your training set is called “train”):

set.seed(1)
small = censusTrain[sample(nrow(censusTrain), 2000), ]
mean(small$over50k==" <=50K") #跟原先資料比率差不多
[1] 0.757

Let us now build a random forest model to predict “over50k”, using the dataset “trainSmall” as the data used to build the model. Set the seed to 1 again right before building the model, and use all of the other variables in the dataset as independent variables. (If you get an error that random forest “can not handle categorical predictors with more than 32 categories”, re-build the model without the nativecountry variable as one of the independent variables.)

Then, make predictions using this model on the entire test set. What is the accuracy of the model on the test set, using a threshold of 0.5? (Remember that you don’t need a “type” argument when making predictions with a random forest model if you want to use a threshold of 0.5. Also, note that your accuracy might be different from the one reported here, since random forest models can still differ depending on your operating system, even when the random seed is set. )

set.seed(1)
rf1 = randomForest(over50k ~ ., small)
pred = predict(rf1, censusTest)
table(censusTest$over50k, pred)
        pred
          <=50K  >50K
   <=50K   8843   870
   >50K    1029  2049
table(censusTest$over50k, pred) %>% {sum(diag(.))/sum(.)} # 0.8515
[1] 0.8515
3.2 預測變數的重要性

As we discussed in lecture, random forest models work by building a large collection of trees. As a result, we lose some of the interpretability that comes with CART in terms of seeing how predictions are made and which variables are important. However, we can still compute metrics that give us insight into which variables are important.

One metric that we can look at is the number of times, aggregated over all of the trees in the random forest model, that a certain variable is selected for a split. To view this metric, run the following lines of R code (replace “MODEL” with the name of your random forest model):

vu = varUsed(rf1, count=TRUE)    #找出隨機森林各個變數被用來當拆分標準的次數
vusorted = sort(vu, decreasing = FALSE, index.return = TRUE) #排序 小到大
par(cex=0.8, mar=c(3,7,1,1))
dotchart(vusorted$x, names(rf1$forest$xlevels[vusorted$ix]))   #rf1$forest$xlevels[vusorted$ix]) 列出各個自變數內的值

This code produces a chart that for each variable measures the number of times that variable was selected for splitting (the value on the x-axis). Which of the following variables is the most important in terms of the number of splits?

  • age


There are many other ‘importance’ metrics, for example

par(cex=0.8)
varImpPlot(rf1)    #選擇拆分標準時,哪種變數會使雜質變得更少


兩種方法結果並不太一樣,所以我們在做實驗時,應兩種都參考,例如取各自的前五名相加做模型參考 - - -

【Q】What’d happen if we use the entire training data?
t0 = Sys.time()
set.seed(1)
rf2 = randomForest(over50k ~ ., censusTrain)   #使用完整資料集
Sys.time() - t0
Time difference of 15.07 secs

Compare the accuracy of models

p.rf1 = predict(rf1, censusTest, "prob")[,2]   
p.rf2 = predict(rf2, censusTest, "prob")[,2]
px = cbind(glm=p.glm, cart=p.cart, rf_small=p.rf1, rf_full=p.rf2)     
apply(px, 2, function(x) {        #1:橫的計算 2:直的計算 
  table(censusTest$over50k, x > 0.5) %>% {sum(diag(.))/sum(.)} 
  }) %>% sort
    cart rf_small      glm  rf_full 
  0.8474   0.8514   0.8552   0.8658 
colAUC(px, censusTest$over50k, T)
                    glm  cart rf_small rf_full
 <=50K vs.  >50K 0.9062 0.847   0.8972  0.9069


開啟平行運算
library(doParallel)
Loading required package: foreach
Loading required package: iterators
Loading required package: parallel
clust = makeCluster(detectCores())
registerDoParallel(clust); getDoParWorkers()
[1] 4

4 使用交叉驗證流程調校參數

Problem 4.1 - Selecting cp by Cross-Validation

We now conclude our study of this data set by looking at how CART behaves with different choices of its parameters.

Let us select the cp parameter for our CART model using k-fold cross validation, with k = 10 folds. Do this by using the train function. Set the seed beforehand to 2. Test cp values from 0.002 to 0.1 in 0.002 increments, by using the following command:

cartGrid = expand.grid( .cp = seq(0.002,0.1,0.002))

Also, remember to use the entire training set “train” when building this model. The train function might take some time to run.

t0 = Sys.time()
set.seed(2)
cv1 = train(
  over50k ~ ., data = censusTrain, method = "rpart", 
  trControl = trainControl(method = "cv", number=10),         #做十次交叉驗證
  tuneGrid = expand.grid(cp = seq(0.002,0.1,0.002))           #從0.002開始做到0.1 每0.002跳一次
  )
Sys.time() - t0
Time difference of 22.21 secs
plot(cv1, main = sprintf("optimal cp at %f", cv1$bestTune$cp) )

Which value of cp does the train function recommend?

  • 0.002


【Q】How many model have been built in the cross-validation process?

+(0.1-0.002)/0.002+1=50 50*10=500


【Q】Is the “optimal” cp covered in the reange specified above? If negative, what should we do?

+由圖可知,這圖裡最佳的CP在最左邊,還不到模型的最佳解,應該把最低的參數調到0


4.2 Final Model (CV1)

Fit a CART model to the training data using this value of cp. What is the prediction accuracy on the test set?

cart1 = rpart(over50k ~ ., censusTrain, method='class', cp=cv1$bestTune$cp)
p.cart1 = pred = predict(cart1, censusTest)[,2]
table(censusTest$over50k, pred > 0.5) %>% {sum(diag(.))/sum(.)} # 0.8612
[1] 0.8612
4.3 The Final Decision Tree

Plot the CART tree for this model.

prp(cart1)

How many splits are there?

  • 18




5 參數調校與模型選擇

Repeated Cross-Validation
t0 = Sys.time()
set.seed(2)
cv2 = train(
  over50k ~ ., data = censusTrain, method = "rpart", 
  trControl = trainControl(method="repeatedcv", number=10, repeats=8), 
  tuneGrid = expand.grid(cp = seq(0,0.002,0.00005)) 
  )
Sys.time() - t0
Time difference of 1.123 mins
plot(cv2, main = sprintf("optimal cp at %f", cv2$bestTune$cp) )

cart2 = rpart(over50k ~ ., censusTrain, method='class', cp=cv2$bestTune$cp)
p.cart2 = pred = predict(cart2, censusTest)[,2]
px = cbind(px, cart.cv1 = p.cart1, cart.cv2 = p.cart2)
rbind(
  Accuracy = apply(px, 2, function(x) {
    table(censusTest$over50k, x > 0.5) %>% {sum(diag(.))/sum(.)} }),
  AUC = colAUC(px, censusTest$over50k) %>% `rownames<-`("AUC")
  ) %>% t 
         Accuracy    AUC
glm        0.8552 0.9062
cart       0.8474 0.8470
rf_small   0.8514 0.8972
rf_full    0.8658 0.9069
cart.cv1   0.8612 0.8714
cart.cv2   0.8631 0.8925
【Q】Does cv2$bestTune$cp perform better?
  • ACC跟AUC都有稍微上升


【Q】Is the difference (\(\Delta_{accuracy}\)=0.19%, \(\Delta_{auc}\)=2.11%) important?
  • 稍微調整了CP,就能人ACC跟AUC上升許多,所以如何設定CP的值對企業非常重要


Comparing ROC’s
par(cex=1.25)
auc = colAUC(px[,c(2,4,5,6)], censusTest$over50k, T)

Comparing DPP’s
par(mfcol=c(3,2), mar=c(3,3,4,1), cex=0.7)
for(i in c(1,3,4,2,5,6)) {
  DPP(px[,i], censusTest$over50k, " >50K", title=colnames(px)[i])
  }

Correlation Among Predictions
cor(px)
            glm   cart rf_small rf_full cart.cv1 cart.cv2
glm      1.0000 0.8614   0.8908  0.9107   0.9058   0.9023
cart     0.8614 1.0000   0.8334  0.8164   0.9189   0.8615
rf_small 0.8908 0.8334   1.0000  0.9163   0.8802   0.8747
rf_full  0.9107 0.8164   0.9163  1.0000   0.8862   0.9139
cart.cv1 0.9058 0.9189   0.8802  0.8862   1.0000   0.9401
cart.cv2 0.9023 0.8615   0.8747  0.9139   0.9401   1.0000
Model Ensemble
glm_cart = (px[,"glm"] + px[,"cart.cv2"])/2
glm_rf = (px[,"glm"] + px[,"rf_full"])/2
px2 = cbind(px, glm_cart, glm_rf)
rbind(apply(px2, 2, function(x) {
        table(censusTest$over50k, x > 0.5) %>% {sum(diag(.))/sum(.)} }),
      colAUC(px2, censusTest$over50k)) %>% t %>% 
      data.frame %>% setNames(c("Accuracy", "AUC"))



停止平行運算

stopCluster(clust)








LS0tDQp0aXRsZTogIkFTNC0zIFByZWRpY3RpbmcgRWFybmluZ3MgZnJvbSBDZW5zdXMgRGF0YSAodGVtcC4pIg0KYXV0aG9yOiAiR3JvdXAgMiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCjxicj4NCg0KKirkuLvopoHorbDpoYzvvJrkvb/nlKjmma7mn6Xos4fmlpnpoJDmuKzmlLblhaUqKg0KDQoqKuWtuOe/kumHjem7nu+8mioqDQoNCisg5aSa6aGe5Yil55qE6aCQ5ris6K6K5pW4DQorIOato+eiuuaApyAoQWNjdXJhY3kpIHZzLiDlj6/op6Pph4vmgKcgKEludGVycHJldGFiaWxpdHkpDQorIOWkmuaooeWei+S5i+mWk+eahEFDQyxBVUPmr5TovIMgYGNhVG9vbHM6OmNvbEFVQygpYA0KKyDlpJrmqKHlnovkuYvplpPnmoRST0MsIERQUOavlOi8gyBgY2FUb29sczo6Y29sQVVDKClgDQorIOS6pOWPiempl+itieiIh+WPg+aVuOiqv+agoea1geeoiw0KKyDplovllZ/lubPooYzpgYvnrpflip/og70NCisg5qih5Z6L57WE5ZCIIE1vZGVsIEVuc2VtYmxlDQoNCg0KYGBge3IgZWNobz1ULCBtZXNzYWdlPUYsIGNhY2hlPUYsIHdhcm5pbmc9Rn0NCnJtKGxpc3Q9bHMoYWxsPVQpKQ0Kb3B0aW9ucyhkaWdpdHM9NCwgc2NpcGVuPTEyKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkocnBhcnQpDQpsaWJyYXJ5KHJwYXJ0LnBsb3QpDQpsaWJyYXJ5KGNhcmV0KQ0KbGlicmFyeShyYW5kb21Gb3Jlc3QpDQpsaWJyYXJ5KGNhVG9vbHMpDQpzb3VyY2UoJ0RQUC5SJykNCmBgYA0KDQotIC0gLQ0KIyMjIDEg6YKP6Lyv5byP5Zue5q245qih5Z6LDQoNCiMjIyMjIDEuMSDmlbTnkIbos4fmlpnjgIHlu7rnq4vmqKHlnosNCmBgYHtyfQ0KY2Vuc3VzPSAgcmVhZC5jc3YoJ2RhdGEvY2Vuc3VzLmNzdicpDQpgYGANCkxldCdzIGJlZ2luIGJ5IGJ1aWxkaW5nIGEgbG9naXN0aWMgcmVncmVzc2lvbiBtb2RlbCB0byBwcmVkaWN0IHdoZXRoZXIgYW4gaW5kaXZpZHVhbCdzIGVhcm5pbmdzIGFyZSBhYm92ZSAkNTAsMDAwICh0aGUgdmFyaWFibGUgIm92ZXI1MGsiKSB1c2luZyBhbGwgb2YgdGhlIG90aGVyIHZhcmlhYmxlcyBhcyBpbmRlcGVuZGVudCB2YXJpYWJsZXMuIEZpcnN0LCByZWFkIHRoZSBkYXRhc2V0IGNlbnN1cy5jc3YgaW50byBSLg0KDQpUaGVuLCBzcGxpdCB0aGUgZGF0YSByYW5kb21seSBpbnRvIGEgdHJhaW5pbmcgc2V0IGFuZCBhIHRlc3Rpbmcgc2V0LCBzZXR0aW5nIHRoZSBzZWVkIHRvIDIwMDAgYmVmb3JlIGNyZWF0aW5nIHRoZSBzcGxpdC4gU3BsaXQgdGhlIGRhdGEgc28gdGhhdCB0aGUgdHJhaW5pbmcgc2V0IGNvbnRhaW5zIDYwJSBvZiB0aGUgb2JzZXJ2YXRpb25zLCB3aGlsZSB0aGUgdGVzdGluZyBzZXQgY29udGFpbnMgNDAlIG9mIHRoZSBvYnNlcnZhdGlvbnMuDQoNCk5leHQsIGJ1aWxkIGEgbG9naXN0aWMgcmVncmVzc2lvbiBtb2RlbCB0byBwcmVkaWN0IHRoZSBkZXBlbmRlbnQgdmFyaWFibGUgIm92ZXI1MGsiLCB1c2luZyBhbGwgb2YgdGhlIG90aGVyIHZhcmlhYmxlcyBpbiB0aGUgZGF0YXNldCBhcyBpbmRlcGVuZGVudCB2YXJpYWJsZXMuIFVzZSB0aGUgdHJhaW5pbmcgc2V0IHRvIGJ1aWxkIHRoZSBtb2RlbC4NCg0KV2hpY2ggdmFyaWFibGVzIGFyZSBzaWduaWZpY2FudCwgb3IgaGF2ZSBmYWN0b3JzIHRoYXQgYXJlIHNpZ25pZmljYW50PyAoVXNlIDAuMSBhcyB5b3VyIHNpZ25pZmljYW5jZSB0aHJlc2hvbGQsIHNvIHZhcmlhYmxlcyB3aXRoIGEgcGVyaW9kIG9yIGRvdCBpbiB0aGUgc3RhcnMgY29sdW1uIHNob3VsZCBiZSBjb3VudGVkIHRvby4gWW91IG1pZ2h0IHNlZSBhIHdhcm5pbmcgbWVzc2FnZSBoZXJlIC0geW91IGNhbiBpZ25vcmUgaXQgYW5kIHByb2NlZWQuIFRoaXMgbWVzc2FnZSBpcyBhIHdhcm5pbmcgdGhhdCB3ZSBtaWdodCBiZSBvdmVyZml0dGluZyBvdXIgbW9kZWwgdG8gdGhlIHRyYWluaW5nIHNldC4pIFNlbGVjdCBhbGwgdGhhdCBhcHBseS4NCmBgYHtyfQ0Kc2V0LnNlZWQoMjAwMCkNCnNwbCA9IHNhbXBsZS5zcGxpdChjZW5zdXMkb3ZlcjUwaywgU3BsaXRSYXRpbyA9IDAuNikNCmNlbnN1c1RyYWluID0gc3Vic2V0KGNlbnN1cyxzcGwgKQ0KY2Vuc3VzVGVzdCA9IHN1YnNldChjZW5zdXMsICFzcGwpDQoNCmdsbTEgPSBnbG0ob3ZlcjUwayB+IC4sIGNlbnN1c1RyYWluLCBmYW1pbHk9Ymlub21pYWwpDQpzdW1tYXJ5KGdsbTEpDQoi6Zmk5LqGQWdl6LefbmF0aXZlY291bnRyeeWFtuS7luiHquiuiuaVuOWFp+eahOe0sOmgheaIluWkmuaIluWwkemDveWwjW92ZXI1MGvmnInlvbHpn78iDQoNCmBgYA0KDQojIyMjIyAxLjIgVGVzdCBBY2N1cmFjeQ0KV2hhdCBpcyB0aGUgYWNjdXJhY3kgb2YgdGhlIG1vZGVsIG9uIHRoZSB0ZXN0aW5nIHNldD8gVXNlIGEgdGhyZXNob2xkIG9mIDAuNS4NCmBgYHtyfQ0KcC5nbG0gPSBwcmVkID0gcHJlZGljdChnbG0xLCBjZW5zdXNUZXN0LCAncmVzcG9uc2UnKQ0KdGFibGUoY2Vuc3VzVGVzdCRvdmVyNTBrLCBwcmVkID4gMC41KQ0KdGFibGUoY2Vuc3VzVGVzdCRvdmVyNTBrLCBwcmVkID4gMC41KSAlPiUge3N1bShkaWFnKC4pKS9zdW0oLil9ICAgIyU+JeWwh+W3puWBtOeahOmBi+eul+e1kOaenOWCs+iHs+WPs+WBtOWHveaVuOeahOesrOS4gOWAi+WPg+aVuA0KDQojIHN1bShkaWFnKHRhYmxlKGNlbnN1c1Rlc3Qkb3ZlcjUwaywgcHJlZCA+IDAuNSkpKS9zdW0odGFibGUoY2Vuc3VzVGVzdCRvdmVyNTBrLCBwcmVkID4gMC41KSkNCmBgYA0KDQojIyMjIyAxLjMgQmFzZWxpbmUgQWNjdXJhY3kNCldoYXQgaXMgdGhlIGJhc2VsaW5lIGFjY3VyYWN5IGZvciB0aGUgdGVzdGluZyBzZXQ/DQpgYGB7cn0NCnRhYmxlKGNlbnN1c1Rlc3Qkb3ZlcjUwaykNCm1lYW4oY2Vuc3VzVGVzdCRvdmVyNTBrID09ICIgPD01MEsiKSAj6YG45pOH5pyA5bi46KaL55qE57WQ5p6cDQojOTcxMy8oOTcxMyszMDc4KQ0KYGBgDQoNCiMjIyMjIDEuNCBUZXN0IEFVQw0KV2hhdCBpcyB0aGUgYXJlYS11bmRlci10aGUtY3VydmUgKEFVQykgZm9yIHRoaXMgbW9kZWwgb24gdGhlIHRlc3Qgc2V0Pw0KYGBge3J9DQpjb2xBVUMocHJlZCwgY2Vuc3VzVGVzdCRvdmVyNTBrKQ0KIzAuOTA2Mg0KYGBgDQo8YnI+DQoNCi0gLSAtDQoNCiMjIyAyLiDmsbrnrZbmqLnmqKHlnosNCg0KIyMjIyMgMi4xIENBUlQgTW9kZWwNCldlIGhhdmUganVzdCBzZWVuIGhvdyB0aGUgbG9naXN0aWMgcmVncmVzc2lvbiBtb2RlbCBmb3IgdGhpcyBkYXRhIGFjaGlldmVzIGEgaGlnaCBhY2N1cmFjeS4gTW9yZW92ZXIsIHRoZSBzaWduaWZpY2FuY2VzIG9mIHRoZSB2YXJpYWJsZXMgZ2l2ZSB1cyBhIHdheSB0byBnYXVnZSB3aGljaCB2YXJpYWJsZXMgYXJlIHJlbGV2YW50IGZvciB0aGlzIHByZWRpY3Rpb24gdGFzay4gSG93ZXZlciwgaXQgaXMgbm90IGltbWVkaWF0ZWx5IGNsZWFyIHdoaWNoIHZhcmlhYmxlcyBhcmUgbW9yZSBpbXBvcnRhbnQgdGhhbiB0aGUgb3RoZXJzLCBlc3BlY2lhbGx5IGR1ZSB0byB0aGUgbGFyZ2UgbnVtYmVyIG9mIGZhY3RvciB2YXJpYWJsZXMgaW4gdGhpcyBwcm9ibGVtLg0KDQpMZXQgdXMgbm93IGJ1aWxkIGEgY2xhc3NpZmljYXRpb24gdHJlZSB0byBwcmVkaWN0ICJvdmVyNTBrIi4gVXNlIHRoZSB0cmFpbmluZyBzZXQgdG8gYnVpbGQgdGhlIG1vZGVsLCBhbmQgYWxsIG9mIHRoZSBvdGhlciB2YXJpYWJsZXMgYXMgaW5kZXBlbmRlbnQgdmFyaWFibGVzLiBVc2UgdGhlIGRlZmF1bHQgcGFyYW1ldGVycywgc28gZG9uJ3Qgc2V0IGEgdmFsdWUgZm9yIG1pbmJ1Y2tldCBvciBjcC4gUmVtZW1iZXIgdG8gc3BlY2lmeSBtZXRob2Q9ImNsYXNzIiBhcyBhbiBhcmd1bWVudCB0byBycGFydCwgc2luY2UgdGhpcyBpcyBhIGNsYXNzaWZpY2F0aW9uIHByb2JsZW0uIEFmdGVyIHlvdSBhcmUgZG9uZSBidWlsZGluZyB0aGUgbW9kZWwsIHBsb3QgdGhlIHJlc3VsdGluZyB0cmVlLg0KDQpIb3cgbWFueSBzcGxpdHMgZG9lcyB0aGUgdHJlZSBoYXZlIGluIHRvdGFsPw0KYGBge3J9DQpjYXJ0MSA9IHJwYXJ0KG92ZXI1MGsgfiAuLCBjZW5zdXNUcmFpbiwgbWV0aG9kPSdjbGFzcycpDQpwcnAoY2FydDEpDQojNOWAi+WIhuijgg0KYGBgDQoNCiMjIyMjIDIuMiDmsbrnrZYo5qi55Lit5L2/55So55qE6aCQ5risKeiuiuaVuA0KV2hpY2ggdmFyaWFibGUgZG9lcyB0aGUgdHJlZSBzcGxpdCBvbiBhdCB0aGUgZmlyc3QgbGV2ZWwgKHRoZSB2ZXJ5IGZpcnN0IHNwbGl0IG9mIHRoZSB0cmVlKT8NCg0KKyByZWxhdGlvbnNoaXANCg0KPGJyPiANCg0KIyMjIyMgMi4zIOaxuuetluiuiuaVuA0KV2hpY2ggdmFyaWFibGVzIGRvZXMgdGhlIHRyZWUgc3BsaXQgb24gYXQgdGhlIHNlY29uZCBsZXZlbCAoaW1tZWRpYXRlbHkgYWZ0ZXIgdGhlIGZpcnN0IHNwbGl0IG9mIHRoZSB0cmVlKT8gU2VsZWN0IGFsbCB0aGF0IGFwcGx5Lg0KDQorIGVkdWNhdGlvbg0KKyBjYXBpdGFsZ2Fpbg0KDQo8YnI+DQoNCiMjIyMjIDIuNCBUZXN0IEFjY3VyYWN5DQpXaGF0IGlzIHRoZSBhY2N1cmFjeSBvZiB0aGUgbW9kZWwgb24gdGhlIHRlc3Rpbmcgc2V0PyBVc2UgYSB0aHJlc2hvbGQgb2YgMC41LiAoWW91IGNhbiBlaXRoZXIgYWRkIHRoZSBhcmd1bWVudCB0eXBlPSJjbGFzcyIsIG9yIGdlbmVyYXRlIHByb2JhYmlsaXRpZXMgYW5kIHVzZSBhIHRocmVzaG9sZCBvZiAwLjUgbGlrZSBpbiBsb2dpc3RpYyByZWdyZXNzaW9uLikNCmBgYHtyfQ0KcC5jYXJ0ID0gcHJlZCA9IHByZWRpY3QoY2FydDEsIGNlbnN1c1Rlc3QpWywyXSAgICMxOjw9NTBrICAyOj41MEsNCnRlc3Q9cHJlZGljdChjYXJ0MSxjZW5zdXNUZXN0LHR5cGUgPSAiY2xhc3MiKSAgICANCnRhYmxlKGNlbnN1c1Rlc3Qkb3ZlcjUwayx0ZXN0KQ0KdGFibGUoY2Vuc3VzVGVzdCRvdmVyNTBrLCBwcmVkID4gMC41KQ0KdGFibGUoY2Vuc3VzVGVzdCRvdmVyNTBrLCBwcmVkID4gMC41KSAlPiUge3N1bShkaWFnKC4pKS9zdW0oLil9ICMgMC44NDc0DQpgYGANCg0KIyMjIyMgMi41IFJPQyBDb21wYXJpc29uDQpMZXQgdXMgbm93IGNvbnNpZGVyIHRoZSBST0MgY3VydmUgYW5kIEFVQyBmb3IgdGhlIENBUlQgbW9kZWwgb24gdGhlIHRlc3Qgc2V0LiBZb3Ugd2lsbCBuZWVkIHRvIGdldCBwcmVkaWN0ZWQgcHJvYmFiaWxpdGllcyBmb3IgdGhlIG9ic2VydmF0aW9ucyBpbiB0aGUgdGVzdCBzZXQgdG8gYnVpbGQgdGhlIFJPQyBjdXJ2ZSBhbmQgY29tcHV0ZSB0aGUgQVVDLiBSZW1lbWJlciB0aGF0IHlvdSBjYW4gZG8gdGhpcyBieSByZW1vdmluZyB0aGUgdHlwZT0iY2xhc3MiIGFyZ3VtZW50IHdoZW4gbWFraW5nIHByZWRpY3Rpb25zLCBhbmQgdGFraW5nIHRoZSBzZWNvbmQgY29sdW1uIG9mIHRoZSByZXN1bHRpbmcgb2JqZWN0Lg0KDQpQbG90IHRoZSBST0MgY3VydmUgZm9yIHRoZSBDQVJUIG1vZGVsIHlvdSBoYXZlIGVzdGltYXRlZC4gT2JzZXJ2ZSB0aGF0IGNvbXBhcmVkIHRvIHRoZSBsb2dpc3RpYyByZWdyZXNzaW9uIFJPQyBjdXJ2ZSwgdGhlIENBUlQgUk9DIGN1cnZlIGlzIGxlc3Mgc21vb3RoIHRoYW4gdGhlIGxvZ2lzdGljIHJlZ3Jlc3Npb24gUk9DIGN1cnZlLiBXaGljaCBvZiB0aGUgZm9sbG93aW5nIGV4cGxhbmF0aW9ucyBmb3IgdGhpcyBiZWhhdmlvciBpcyBtb3N0IGNvcnJlY3Q/IChISU5UOiBUaGluayBhYm91dCB3aGF0IHRoZSBST0MgY3VydmUgaXMgcGxvdHRpbmcgYW5kIHdoYXQgY2hhbmdpbmcgdGhlIHRocmVzaG9sZCBkb2VzLikNCmBgYHtyIGZpZy5oZWlnaHQ9NCwgZmlnLndpZHRoPTR9DQpwYXIoY2V4PTAuOCkNCmNvbEFVQyhjYmluZChwLmdsbSwgcC5jYXJ0KSwgY2Vuc3VzVGVzdCRvdmVyNTBrLCBUKSAgI+Wwh2dsbei3n2NhcnTnmoTlnJbnlavlnKjkuIDotbcgIOi8uOWHuuWNs+eCuumdouepjeWAvA0KYGBgDQoNCiMjIyMjIDIuNiBBVUMgJiBEUFAgQ29tcGFyaXNvbg0KV2hhdCBpcyB0aGUgQVVDIG9mIHRoZSBDQVJUIG1vZGVsIG9uIHRoZSB0ZXN0IHNldD8NCmBgYHtyIGZpZy5oZWlnaHQ9MywgZmlnLndpZHRoPTd9DQpwYXIoY2V4PTAuOCkNCmF1Yy5nbG0gID0gRFBQKHAuZ2xtLCAgY2Vuc3VzVGVzdCRvdmVyNTBrLCAiID41MEsiKSAgI0RQUCjpoJDmuKzlgLwsWei7uOWAi+aVuCzmmK/lkKY+NTBLKQ0KYGBgIA0KYGBge3IgZmlnLmhlaWdodD0zLCBmaWcud2lkdGg9N30NCnBhcihjZXg9MC44KQ0KYXVjLmNhcnQgPSBEUFAocC5jYXJ0LCBjZW5zdXNUZXN0JG92ZXI1MGssICIgPjUwSyIpDQpgYGANCjxicj4NCmdsbeiIh2NhcnTkuYvplpPnmoTlt67nlbDvvJpEUFDoiIdST0PnmoTlnJbvvIxnbG3ovIPlg4/pgKPnuoznmoTlnJbvvIxjYXJ05YmH54K65LiN6YCj57qMDQrlj6/og73nmoTljp/lm6DmmK9jYXJ054K65rG6562W5qi577yM5q+P5LiA5YCL6JGJ56+A6bue5pyJ6JGX6Kix5aSa55qE6bue77yM5Luj6KGo5Zyo6YCZ5YCL5qKd5Lu25LiL77yM6YCZ5Lqb6bue6KKr5oiQ5Yqf6aCQ5ris55qE5qmf546HDQotIC0gLQ0KDQojIyMgMyBSYW5kb20gRm9yZXN0IOaooeWeiw0KDQojIyMjIyBQcm9ibGVtIDMuMSDmuJvlsJHoqJPnt7Tos4fmlpnph48NCkJlZm9yZSBidWlsZGluZyBhIHJhbmRvbSBmb3Jlc3QgbW9kZWwsIHdlJ2xsIGRvd24tc2FtcGxlIG91ciB0cmFpbmluZyBzZXQuIFdoaWxlIHNvbWUgbW9kZXJuIHBlcnNvbmFsIGNvbXB1dGVycyBjYW4gYnVpbGQgYSByYW5kb20gZm9yZXN0IG1vZGVsIG9uIHRoZSBlbnRpcmUgdHJhaW5pbmcgc2V0LCBvdGhlcnMgbWlnaHQgcnVuIG91dCBvZiBtZW1vcnkgd2hlbiB0cnlpbmcgdG8gdHJhaW4gdGhlIG1vZGVsIHNpbmNlIHJhbmRvbSBmb3Jlc3RzIGlzIG11Y2ggbW9yZSBjb21wdXRhdGlvbmFsbHkgaW50ZW5zaXZlIHRoYW4gQ0FSVCBvciBMb2dpc3RpYyBSZWdyZXNzaW9uLiBGb3IgdGhpcyByZWFzb24sIGJlZm9yZSBjb250aW51aW5nIHdlIHdpbGwgZGVmaW5lIGEgbmV3IHRyYWluaW5nIHNldCB0byBiZSB1c2VkIHdoZW4gYnVpbGRpbmcgb3VyIHJhbmRvbSBmb3Jlc3QgbW9kZWwsIHRoYXQgY29udGFpbnMgMjAwMCByYW5kb21seSBzZWxlY3RlZCBvYmVydmF0aW9ucyBmcm9tIHRoZSBvcmlnaW5hbCB0cmFpbmluZyBzZXQuIERvIHRoaXMgYnkgcnVubmluZyB0aGUgZm9sbG93aW5nIGNvbW1hbmRzIGluIHlvdXIgUiBjb25zb2xlIChhc3N1bWluZyB5b3VyIHRyYWluaW5nIHNldCBpcyBjYWxsZWQgInRyYWluIik6DQpgYGB7cn0NCnNldC5zZWVkKDEpDQpzbWFsbCA9IGNlbnN1c1RyYWluW3NhbXBsZShucm93KGNlbnN1c1RyYWluKSwgMjAwMCksIF0NCm1lYW4oc21hbGwkb3ZlcjUwaz09IiA8PTUwSyIpICPot5/ljp/lhYjos4fmlpnmr5Tnjoflt67kuI3lpJoNCmBgYA0KTGV0IHVzIG5vdyBidWlsZCBhIHJhbmRvbSBmb3Jlc3QgbW9kZWwgdG8gcHJlZGljdCAib3ZlcjUwayIsIHVzaW5nIHRoZSBkYXRhc2V0ICJ0cmFpblNtYWxsIiBhcyB0aGUgZGF0YSB1c2VkIHRvIGJ1aWxkIHRoZSBtb2RlbC4gU2V0IHRoZSBzZWVkIHRvIDEgYWdhaW4gcmlnaHQgYmVmb3JlIGJ1aWxkaW5nIHRoZSBtb2RlbCwgYW5kIHVzZSBhbGwgb2YgdGhlIG90aGVyIHZhcmlhYmxlcyBpbiB0aGUgZGF0YXNldCBhcyBpbmRlcGVuZGVudCB2YXJpYWJsZXMuIChJZiB5b3UgZ2V0IGFuIGVycm9yIHRoYXQgcmFuZG9tIGZvcmVzdCAiY2FuIG5vdCBoYW5kbGUgY2F0ZWdvcmljYWwgcHJlZGljdG9ycyB3aXRoIG1vcmUgdGhhbiAzMiBjYXRlZ29yaWVzIiwgcmUtYnVpbGQgdGhlIG1vZGVsIHdpdGhvdXQgdGhlIG5hdGl2ZWNvdW50cnkgdmFyaWFibGUgYXMgb25lIG9mIHRoZSBpbmRlcGVuZGVudCB2YXJpYWJsZXMuKQ0KDQpUaGVuLCBtYWtlIHByZWRpY3Rpb25zIHVzaW5nIHRoaXMgbW9kZWwgb24gdGhlIGVudGlyZSB0ZXN0IHNldC4gV2hhdCBpcyB0aGUgYWNjdXJhY3kgb2YgdGhlIG1vZGVsIG9uIHRoZSB0ZXN0IHNldCwgdXNpbmcgYSB0aHJlc2hvbGQgb2YgMC41PyAoUmVtZW1iZXIgdGhhdCB5b3UgZG9uJ3QgbmVlZCBhICJ0eXBlIiBhcmd1bWVudCB3aGVuIG1ha2luZyBwcmVkaWN0aW9ucyB3aXRoIGEgcmFuZG9tIGZvcmVzdCBtb2RlbCBpZiB5b3Ugd2FudCB0byB1c2UgYSB0aHJlc2hvbGQgb2YgMC41LiBBbHNvLCBub3RlIHRoYXQgeW91ciBhY2N1cmFjeSBtaWdodCBiZSBkaWZmZXJlbnQgZnJvbSB0aGUgb25lIHJlcG9ydGVkIGhlcmUsIHNpbmNlIHJhbmRvbSBmb3Jlc3QgbW9kZWxzIGNhbiBzdGlsbCBkaWZmZXIgZGVwZW5kaW5nIG9uIHlvdXIgb3BlcmF0aW5nIHN5c3RlbSwgZXZlbiB3aGVuIHRoZSByYW5kb20gc2VlZCBpcyBzZXQuICkNCmBgYHtyfQ0Kc2V0LnNlZWQoMSkNCnJmMSA9IHJhbmRvbUZvcmVzdChvdmVyNTBrIH4gLiwgc21hbGwpDQpwcmVkID0gcHJlZGljdChyZjEsIGNlbnN1c1Rlc3QpDQp0YWJsZShjZW5zdXNUZXN0JG92ZXI1MGssIHByZWQpDQp0YWJsZShjZW5zdXNUZXN0JG92ZXI1MGssIHByZWQpICU+JSB7c3VtKGRpYWcoLikpL3N1bSguKX0gIyAwLjg1MTUNCmBgYA0KDQojIyMjIyAzLjIg6aCQ5ris6K6K5pW455qE6YeN6KaB5oCnDQpBcyB3ZSBkaXNjdXNzZWQgaW4gbGVjdHVyZSwgcmFuZG9tIGZvcmVzdCBtb2RlbHMgd29yayBieSBidWlsZGluZyBhIGxhcmdlIGNvbGxlY3Rpb24gb2YgdHJlZXMuIEFzIGEgcmVzdWx0LCB3ZSBsb3NlIHNvbWUgb2YgdGhlIGludGVycHJldGFiaWxpdHkgdGhhdCBjb21lcyB3aXRoIENBUlQgaW4gdGVybXMgb2Ygc2VlaW5nIGhvdyBwcmVkaWN0aW9ucyBhcmUgbWFkZSBhbmQgd2hpY2ggdmFyaWFibGVzIGFyZSBpbXBvcnRhbnQuIEhvd2V2ZXIsIHdlIGNhbiBzdGlsbCBjb21wdXRlIG1ldHJpY3MgdGhhdCBnaXZlIHVzIGluc2lnaHQgaW50byB3aGljaCB2YXJpYWJsZXMgYXJlIGltcG9ydGFudC4NCg0KT25lIG1ldHJpYyB0aGF0IHdlIGNhbiBsb29rIGF0IGlzIHRoZSBudW1iZXIgb2YgdGltZXMsIGFnZ3JlZ2F0ZWQgb3ZlciBhbGwgb2YgdGhlIHRyZWVzIGluIHRoZSByYW5kb20gZm9yZXN0IG1vZGVsLCB0aGF0IGEgY2VydGFpbiB2YXJpYWJsZSBpcyBzZWxlY3RlZCBmb3IgYSBzcGxpdC4gVG8gdmlldyB0aGlzIG1ldHJpYywgcnVuIHRoZSBmb2xsb3dpbmcgbGluZXMgb2YgUiBjb2RlIChyZXBsYWNlICJNT0RFTCIgd2l0aCB0aGUgbmFtZSBvZiB5b3VyIHJhbmRvbSBmb3Jlc3QgbW9kZWwpOg0KYGBge3IgZmlnLmhlaWdodD0zLjJ9DQp2dSA9IHZhclVzZWQocmYxLCBjb3VudD1UUlVFKSAgICAj5om+5Ye66Zqo5qmf5qOu5p6X5ZCE5YCL6K6K5pW46KKr55So5L6G55W25ouG5YiG5qiZ5rqW55qE5qyh5pW4DQp2dXNvcnRlZCA9IHNvcnQodnUsIGRlY3JlYXNpbmcgPSBGQUxTRSwgaW5kZXgucmV0dXJuID0gVFJVRSkgI+aOkuW6jyDlsI/liLDlpKcNCnBhcihjZXg9MC44LCBtYXI9YygzLDcsMSwxKSkNCmRvdGNoYXJ0KHZ1c29ydGVkJHgsIG5hbWVzKHJmMSRmb3Jlc3QkeGxldmVsc1t2dXNvcnRlZCRpeF0pKSAgICNyZjEkZm9yZXN0JHhsZXZlbHNbdnVzb3J0ZWQkaXhdKSDliJflh7rlkITlgIvoh6rorormlbjlhafnmoTlgLwNCmBgYA0KVGhpcyBjb2RlIHByb2R1Y2VzIGEgY2hhcnQgdGhhdCBmb3IgZWFjaCB2YXJpYWJsZSBtZWFzdXJlcyB0aGUgbnVtYmVyIG9mIHRpbWVzIHRoYXQgdmFyaWFibGUgd2FzIHNlbGVjdGVkIGZvciBzcGxpdHRpbmcgKHRoZSB2YWx1ZSBvbiB0aGUgeC1heGlzKS4gV2hpY2ggb2YgdGhlIGZvbGxvd2luZyB2YXJpYWJsZXMgaXMgdGhlIG1vc3QgaW1wb3J0YW50IGluIHRlcm1zIG9mIHRoZSBudW1iZXIgb2Ygc3BsaXRzPw0KDQorIGFnZQ0KDQo8YnI+DQpUaGVyZSBhcmUgbWFueSBvdGhlciAnaW1wb3J0YW5jZScgbWV0cmljcywgZm9yIGV4YW1wbGUNCmBgYHtyIGZpZy5oZWlnaHQ9My4yfQ0KcGFyKGNleD0wLjgpDQp2YXJJbXBQbG90KHJmMSkgICAgI+mBuOaTh+aLhuWIhuaomea6luaZgu+8jOWTqueoruiuiuaVuOacg+S9v+mbnOizquiuiuW+l+abtOWwkQ0KYGBgDQo8YnI+DQrlhannqK7mlrnms5XntZDmnpzkuKbkuI3lpKrkuIDmqKPvvIzmiYDku6XmiJHlgJHlnKjlgZrlr6bpqZfmmYLvvIzmh4nlhannqK7pg73lj4PogIPvvIzkvovlpoLlj5blkIToh6rnmoTliY3kupTlkI3nm7jliqDlgZrmqKHlnovlj4PogIMNCi0gLSAtDQoNCiMjIyMjIOOAkFHjgJFXaGF0J2QgaGFwcGVuIGlmIHdlIHVzZSB0aGUgZW50aXJlIHRyYWluaW5nIGRhdGE/IA0KYGBge3J9DQp0MCA9IFN5cy50aW1lKCkNCnNldC5zZWVkKDEpDQpyZjIgPSByYW5kb21Gb3Jlc3Qob3ZlcjUwayB+IC4sIGNlbnN1c1RyYWluKSAgICPkvb/nlKjlrozmlbTos4fmlpnpm4YNClN5cy50aW1lKCkgLSB0MA0KYGBgDQoNCkNvbXBhcmUgdGhlIGFjY3VyYWN5IG9mIG1vZGVscyANCmBgYHtyfQ0KcC5yZjEgPSBwcmVkaWN0KHJmMSwgY2Vuc3VzVGVzdCwgInByb2IiKVssMl0gICANCnAucmYyID0gcHJlZGljdChyZjIsIGNlbnN1c1Rlc3QsICJwcm9iIilbLDJdDQpgYGANCg0KYGBge3J9DQpweCA9IGNiaW5kKGdsbT1wLmdsbSwgY2FydD1wLmNhcnQsIHJmX3NtYWxsPXAucmYxLCByZl9mdWxsPXAucmYyKSAgICAgDQphcHBseShweCwgMiwgZnVuY3Rpb24oeCkgeyAgICAgICAgIzE65qmr55qE6KiI566XIDI655u055qE6KiI566XIA0KICB0YWJsZShjZW5zdXNUZXN0JG92ZXI1MGssIHggPiAwLjUpICU+JSB7c3VtKGRpYWcoLikpL3N1bSguKX0gDQogIH0pICU+JSBzb3J0DQpgYGANCg0KYGBge3IgZmlnLmhlaWdodD01LCBmaWcud2lkdGg9NX0NCmNvbEFVQyhweCwgY2Vuc3VzVGVzdCRvdmVyNTBrLCBUKQ0KYGBgDQoNCg0KDQotIC0gLQ0KDQojIyMjIyDplovllZ8qKuW5s+ihjOmBi+eulyoqDQpgYGB7cn0NCmxpYnJhcnkoZG9QYXJhbGxlbCkNCmNsdXN0ID0gbWFrZUNsdXN0ZXIoZGV0ZWN0Q29yZXMoKSkNCnJlZ2lzdGVyRG9QYXJhbGxlbChjbHVzdCk7IGdldERvUGFyV29ya2VycygpDQpgYGANCg0KIyMjIDQg5L2/55So5Lqk5Y+J6amX6K2J5rWB56iL6Kq/5qCh5Y+D5pW4ICANCg0KIyMjIyMgUHJvYmxlbSA0LjEgLSBTZWxlY3RpbmcgY3AgYnkgQ3Jvc3MtVmFsaWRhdGlvbg0KV2Ugbm93IGNvbmNsdWRlIG91ciBzdHVkeSBvZiB0aGlzIGRhdGEgc2V0IGJ5IGxvb2tpbmcgYXQgaG93IENBUlQgYmVoYXZlcyB3aXRoIGRpZmZlcmVudCBjaG9pY2VzIG9mIGl0cyBwYXJhbWV0ZXJzLg0KDQpMZXQgdXMgc2VsZWN0IHRoZSBjcCBwYXJhbWV0ZXIgZm9yIG91ciBDQVJUIG1vZGVsIHVzaW5nIGstZm9sZCBjcm9zcyB2YWxpZGF0aW9uLCB3aXRoIGsgPSAxMCBmb2xkcy4gRG8gdGhpcyBieSB1c2luZyB0aGUgdHJhaW4gZnVuY3Rpb24uIFNldCB0aGUgc2VlZCBiZWZvcmVoYW5kIHRvIDIuIFRlc3QgY3AgdmFsdWVzIGZyb20gMC4wMDIgdG8gMC4xIGluIDAuMDAyIGluY3JlbWVudHMsIGJ5IHVzaW5nIHRoZSBmb2xsb3dpbmcgY29tbWFuZDoNCg0KY2FydEdyaWQgPSBleHBhbmQuZ3JpZCggLmNwID0gc2VxKDAuMDAyLDAuMSwwLjAwMikpDQoNCkFsc28sIHJlbWVtYmVyIHRvIHVzZSB0aGUgZW50aXJlIHRyYWluaW5nIHNldCAidHJhaW4iIHdoZW4gYnVpbGRpbmcgdGhpcyBtb2RlbC4gVGhlIHRyYWluIGZ1bmN0aW9uIG1pZ2h0IHRha2Ugc29tZSB0aW1lIHRvIHJ1bi4NCg0KDQpgYGB7cn0NCnQwID0gU3lzLnRpbWUoKQ0Kc2V0LnNlZWQoMikNCmN2MSA9IHRyYWluKA0KICBvdmVyNTBrIH4gLiwgZGF0YSA9IGNlbnN1c1RyYWluLCBtZXRob2QgPSAicnBhcnQiLCANCiAgdHJDb250cm9sID0gdHJhaW5Db250cm9sKG1ldGhvZCA9ICJjdiIsIG51bWJlcj0xMCksICAgICAgICAgI+WBmuWNgeasoeS6pOWPiempl+itiQ0KICB0dW5lR3JpZCA9IGV4cGFuZC5ncmlkKGNwID0gc2VxKDAuMDAyLDAuMSwwLjAwMikpICAgICAgICAgICAj5b6eMC4wMDLplovlp4vlgZrliLAwLjEg5q+PMC4wMDLot7PkuIDmrKENCiAgKQ0KU3lzLnRpbWUoKSAtIHQwDQpgYGANCg0KYGBge3J9DQpwbG90KGN2MSwgbWFpbiA9IHNwcmludGYoIm9wdGltYWwgY3AgYXQgJWYiLCBjdjEkYmVzdFR1bmUkY3ApICkNCmBgYA0KV2hpY2ggdmFsdWUgb2YgYGNwYCBkb2VzIHRoZSB0cmFpbiBmdW5jdGlvbiByZWNvbW1lbmQ/DQoNCisgMC4wMDINCg0KPGJyPg0KDQojIyMjIyDjgJBR44CRSG93IG1hbnkgbW9kZWwgaGF2ZSBiZWVuIGJ1aWx0IGluIHRoZSBjcm9zcy12YWxpZGF0aW9uIHByb2Nlc3M/IA0KDQorKDAuMS0wLjAwMikvMC4wMDIrMT01MCAgICA1MCoxMD01MDANCg0KDQo8YnI+DQoNCiMjIyMjIOOAkFHjgJFJcyB0aGUgIm9wdGltYWwiIGBjcGAgY292ZXJlZCBpbiB0aGUgcmVhbmdlIHNwZWNpZmllZCBhYm92ZT8gSWYgbmVnYXRpdmUsIHdoYXQgc2hvdWxkIHdlIGRvPyANCg0KK+eUseWcluWPr+efpe+8jOmAmeWcluijoeacgOS9s+eahENQ5Zyo5pyA5bem6YKK77yM6YKE5LiN5Yiw5qih5Z6L55qE5pyA5L2z6Kej77yM5oeJ6Kmy5oqK5pyA5L2O55qE5Y+D5pW46Kq/5YiwMA0KDQo8YnI+DQoNCiMjIyMjIDQuMiBGaW5hbCBNb2RlbCAoQ1YxKQ0KRml0IGEgQ0FSVCBtb2RlbCB0byB0aGUgdHJhaW5pbmcgZGF0YSB1c2luZyB0aGlzIHZhbHVlIG9mIGBjcGAuIFdoYXQgaXMgdGhlIHByZWRpY3Rpb24gYWNjdXJhY3kgb24gdGhlIHRlc3Qgc2V0Pw0KYGBge3J9DQpjYXJ0MSA9IHJwYXJ0KG92ZXI1MGsgfiAuLCBjZW5zdXNUcmFpbiwgbWV0aG9kPSdjbGFzcycsIGNwPWN2MSRiZXN0VHVuZSRjcCkNCnAuY2FydDEgPSBwcmVkID0gcHJlZGljdChjYXJ0MSwgY2Vuc3VzVGVzdClbLDJdDQp0YWJsZShjZW5zdXNUZXN0JG92ZXI1MGssIHByZWQgPiAwLjUpICU+JSB7c3VtKGRpYWcoLikpL3N1bSguKX0gIyAwLjg2MTINCmBgYA0KDQojIyMjIyA0LjMgVGhlIEZpbmFsIERlY2lzaW9uIFRyZWUNClBsb3QgdGhlIENBUlQgdHJlZSBmb3IgdGhpcyBtb2RlbC4gDQpgYGB7cn0NCnBycChjYXJ0MSkNCmBgYA0KSG93IG1hbnkgc3BsaXRzIGFyZSB0aGVyZT8NCg0KKyAxOA0KDQo8YnI+PGJyPg0KDQotIC0gLQ0KDQojIyMgNSDlj4Pmlbjoqr/moKHoiIfmqKHlnovpgbjmk4cNCg0KIyMjIyMgUmVwZWF0ZWQgQ3Jvc3MtVmFsaWRhdGlvbg0KYGBge3J9DQp0MCA9IFN5cy50aW1lKCkNCnNldC5zZWVkKDIpDQpjdjIgPSB0cmFpbigNCiAgb3ZlcjUwayB+IC4sIGRhdGEgPSBjZW5zdXNUcmFpbiwgbWV0aG9kID0gInJwYXJ0IiwgDQogIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2Q9InJlcGVhdGVkY3YiLCBudW1iZXI9MTAsIHJlcGVhdHM9OCksIA0KICB0dW5lR3JpZCA9IGV4cGFuZC5ncmlkKGNwID0gc2VxKDAsMC4wMDIsMC4wMDAwNSkpIA0KICApDQpTeXMudGltZSgpIC0gdDANCmBgYA0KDQpgYGB7cn0NCnBsb3QoY3YyLCBtYWluID0gc3ByaW50Zigib3B0aW1hbCBjcCBhdCAlZiIsIGN2MiRiZXN0VHVuZSRjcCkgKQ0KYGBgDQoNCmBgYHtyfQ0KY2FydDIgPSBycGFydChvdmVyNTBrIH4gLiwgY2Vuc3VzVHJhaW4sIG1ldGhvZD0nY2xhc3MnLCBjcD1jdjIkYmVzdFR1bmUkY3ApDQpwLmNhcnQyID0gcHJlZCA9IHByZWRpY3QoY2FydDIsIGNlbnN1c1Rlc3QpWywyXQ0KcHggPSBjYmluZChweCwgY2FydC5jdjEgPSBwLmNhcnQxLCBjYXJ0LmN2MiA9IHAuY2FydDIpDQpgYGANCg0KYGBge3J9DQpyYmluZCgNCiAgQWNjdXJhY3kgPSBhcHBseShweCwgMiwgZnVuY3Rpb24oeCkgew0KICAgIHRhYmxlKGNlbnN1c1Rlc3Qkb3ZlcjUwaywgeCA+IDAuNSkgJT4lIHtzdW0oZGlhZyguKSkvc3VtKC4pfSB9KSwNCiAgQVVDID0gY29sQVVDKHB4LCBjZW5zdXNUZXN0JG92ZXI1MGspICU+JSBgcm93bmFtZXM8LWAoIkFVQyIpDQogICkgJT4lIHQgDQpgYGANCg0KIyMjIyMg44CQUeOAkURvZXMgYGN2MiRiZXN0VHVuZSRjcGAgcGVyZm9ybSBiZXR0ZXI/DQoNCisgQUND6LefQVVD6YO95pyJ56iN5b6u5LiK5Y2HDQoNCjxicj4NCg0KIyMjIyMg44CQUeOAkUlzIHRoZSBkaWZmZXJlbmNlICgkXERlbHRhX3thY2N1cmFjeX0kPTAuMTklLCAkXERlbHRhX3thdWN9JD0yLjExJSkgaW1wb3J0YW50Pw0KDQorIOeojeW+ruiqv+aVtOS6hkNQ77yM5bCx6IO95Lq6QUND6LefQVVD5LiK5Y2H6Kix5aSa77yM5omA5Lul5aaC5L2V6Kit5a6aQ1DnmoTlgLzlsI3kvIHmpa3pnZ7luLjph43opoENCg0KPGJyPg0KDQoNCiMjIyMjIENvbXBhcmluZyBST0Mncw0KDQpgYGB7ciBmaWcuaGVpZ2h0PTUsIGZpZy53aWR0aD01fQ0KcGFyKGNleD0xLjI1KQ0KYXVjID0gY29sQVVDKHB4WyxjKDIsNCw1LDYpXSwgY2Vuc3VzVGVzdCRvdmVyNTBrLCBUKQ0KYGBgDQoNCiMjIyMjIENvbXBhcmluZyBEUFAncw0KYGBge3IgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9OX0NCnBhcihtZmNvbD1jKDMsMiksIG1hcj1jKDMsMyw0LDEpLCBjZXg9MC43KQ0KZm9yKGkgaW4gYygxLDMsNCwyLDUsNikpIHsNCiAgRFBQKHB4WyxpXSwgY2Vuc3VzVGVzdCRvdmVyNTBrLCAiID41MEsiLCB0aXRsZT1jb2xuYW1lcyhweClbaV0pDQogIH0NCmBgYA0KDQojIyMjIyBDb3JyZWxhdGlvbiBBbW9uZyBQcmVkaWN0aW9ucw0KYGBge3J9DQpjb3IocHgpDQpgYGANCg0KIyMjIyMgTW9kZWwgRW5zZW1ibGUNCmBgYHtyfQ0KZ2xtX2NhcnQgPSAocHhbLCJnbG0iXSArIHB4WywiY2FydC5jdjIiXSkvMg0KZ2xtX3JmID0gKHB4WywiZ2xtIl0gKyBweFssInJmX2Z1bGwiXSkvMg0KcHgyID0gY2JpbmQocHgsIGdsbV9jYXJ0LCBnbG1fcmYpDQpyYmluZChhcHBseShweDIsIDIsIGZ1bmN0aW9uKHgpIHsNCiAgICAgICAgdGFibGUoY2Vuc3VzVGVzdCRvdmVyNTBrLCB4ID4gMC41KSAlPiUge3N1bShkaWFnKC4pKS9zdW0oLil9IH0pLA0KICAgICAgY29sQVVDKHB4MiwgY2Vuc3VzVGVzdCRvdmVyNTBrKSkgJT4lIHQgJT4lIA0KICAgICAgZGF0YS5mcmFtZSAlPiUgc2V0TmFtZXMoYygiQWNjdXJhY3kiLCAiQVVDIikpDQpgYGANCjxicj4NCg0KLSAtIC0NCg0K5YGc5q2iKirlubPooYzpgYvnrpcqKg0KYGBge3J9DQpzdG9wQ2x1c3RlcihjbHVzdCkNCmBgYA0KPGJyPg0KDQotIC0gLQ0KDQo8YnI+PGJyPjxicj48YnI+PGJyPg0KDQo8c3R5bGU+DQouY2FwdGlvbiB7DQogIGNvbG9yOiAjNzc3Ow0KICBtYXJnaW4tdG9wOiAxMHB4Ow0KfQ0KcCBjb2RlIHsNCiAgd2hpdGUtc3BhY2U6IGluaGVyaXQ7DQp9DQpwcmUgew0KICB3b3JkLWJyZWFrOiBub3JtYWw7DQogIHdvcmQtd3JhcDogbm9ybWFsOw0KICBsaW5lLWhlaWdodDogMTsNCn0NCnByZSBjb2RlIHsNCiAgd2hpdGUtc3BhY2U6IGluaGVyaXQ7DQp9DQpwLGxpIHsNCiAgZm9udC1mYW1pbHk6ICJUcmVidWNoZXQgTVMiLCAi5b6u6Luf5q2j6buR6auUIiwgIk1pY3Jvc29mdCBKaGVuZ0hlaSI7DQp9DQoNCi5yew0KICBsaW5lLWhlaWdodDogMS4yOw0KfQ0KDQp0aXRsZXsNCiAgY29sb3I6ICNjYzAwMDA7DQogIGZvbnQtZmFtaWx5OiAiVHJlYnVjaGV0IE1TIiwgIuW+rui7n+ato+m7kemrlCIsICJNaWNyb3NvZnQgSmhlbmdIZWkiOw0KfQ0KDQpib2R5ew0KICBmb250LWZhbWlseTogIlRyZWJ1Y2hldCBNUyIsICLlvq7ou5/mraPpu5Hpq5QiLCAiTWljcm9zb2Z0IEpoZW5nSGVpIjsNCn0NCg0KaDEsaDIsaDMsaDQsaDV7DQogIGNvbG9yOiAjMDA2NmZmOw0KICBmb250LWZhbWlseTogIlRyZWJ1Y2hldCBNUyIsICLlvq7ou5/mraPpu5Hpq5QiLCAiTWljcm9zb2Z0IEpoZW5nSGVpIjsNCn0NCg0KaDQsaDV7DQogIGJhY2tncm91bmQ6ICNjY2ZmZmY7DQp9DQoNCjwvc3R5bGU+DQoNCg==