Xu ly du lieu PhD cho Mr. Giang
Doc du lieu
# Bang 3.22
Giang<-read.csv("https://raw.githubusercontent.com/tuyenhavan/Statistics/master/S%E1%BB%91%20li%E1%BB%87u%20th%C3%B4%20Da%20gop_22.csv",sep = ";",header=T)
head(Giang)
library("dplyr")
library("tidyr")
D1<-Giang %>% filter( Gioi_Tinh=="Nam") %>% select(1,7)
head(D1)
library(psych)
describe(D1)
vars n mean sd median trimmed mad min max range skew kurtosis
Chay_5 1 260 1067.96 42.56 1057 1070.93 31.13 925 1212 287 -1.07 2.83
Nhom* 2 260 2.28 0.85 3 2.35 0.00 1 3 2 -0.57 -1.40
se
Chay_5 2.64
Nhom* 0.05
Chay tuy suc 5phut
library(psych)
p1<-aov(D1$Chay_5~D1$Nhom)
summary(p1)
Df Sum Sq Mean Sq F value Pr(>F)
D1$Nhom 2 28210 14105 8.222 0.000346 ***
Residuals 257 440905 1716
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(p1)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = D1$Chay_5 ~ D1$Nhom)
$`D1$Nhom`
diff lwr upr p adj
G2-G1 -25.500000 -43.58707 -7.412933 0.0029167
G3-G1 -22.907176 -37.32313 -8.491223 0.0006480
G3-G2 2.592824 -13.36193 18.547581 0.9223180
plot(TukeyHSD(p1))

Bat xa tai cho
D2<-Giang %>% filter( Gioi_Tinh=="Nam") %>% select(2,7)
p2<-aov(D2$Bat_Xa~D2$Nhom)
summary(p2)
Df Sum Sq Mean Sq F value Pr(>F)
D2$Nhom 2 1334 666.8 7.098 0.000999 ***
Residuals 257 24145 93.9
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(p2)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = D2$Bat_Xa ~ D2$Nhom)
$`D2$Nhom`
diff lwr upr p adj
G2-G1 -4.7352941 -8.967926 -0.5026624 0.0239975
G3-G1 -5.2759700 -8.649508 -1.9024314 0.0008073
G3-G2 -0.5406758 -4.274316 3.1929648 0.9378000
plot(TukeyHSD(p2))

Luc bo tay
D3<-Giang %>% filter( Gioi_Tinh=="Nam") %>% select(3,7)
p3<-aov(D3$Luc_Bop~D3$Nhom)
summary(p3)
Df Sum Sq Mean Sq F value Pr(>F)
D3$Nhom 2 295 147.72 5.964 0.00294 **
Residuals 257 6366 24.77
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(p3)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = D3$Luc_Bop ~ D3$Nhom)
$`D3$Nhom`
diff lwr upr p adj
G2-G1 -2.2098039 -4.383177 -0.03643098 0.0452847
G3-G1 -2.4874844 -4.219730 -0.75523882 0.0023644
G3-G2 -0.2776804 -2.194831 1.63947043 0.9377766
plot(TukeyHSD(p3))

Chay 30m
D4<-Giang %>% filter( Gioi_Tinh=="Nam") %>% select(4,7)
p4<-aov(D4$Chay_30m~D4$Nhom)
summary(p4)
Df Sum Sq Mean Sq F value Pr(>F)
D4$Nhom 2 2.08 1.0421 2.477 0.086 .
Residuals 257 108.10 0.4206
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(p4)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = D4$Chay_30m ~ D4$Nhom)
$`D4$Nhom`
diff lwr upr p adj
G2-G1 0.23397059 -0.04923789 0.5171791 0.1276182
G3-G1 0.18730392 -0.03842200 0.4130298 0.1253522
G3-G2 -0.04666667 -0.29648728 0.2031540 0.8986846
plot(TukeyHSD(p4))

Chay con thoi
D5<-Giang %>% filter( Gioi_Tinh=="Nam") %>% select(5,7)
p5<-aov(D5$Con_Thoi~D5$Nhom)
summary(p5)
Df Sum Sq Mean Sq F value Pr(>F)
D5$Nhom 2 7.26 3.632 14.18 1.44e-06 ***
Residuals 257 65.82 0.256
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(p5)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = D5$Con_Thoi ~ D5$Nhom)
$`D5$Nhom`
diff lwr upr p adj
G2-G1 0.2398529 0.01886231 0.4608436 0.0297252
G3-G1 0.3970536 0.22091723 0.5731900 0.0000007
G3-G2 0.1572007 -0.03773706 0.3521384 0.1404423
plot(TukeyHSD(p5))

Nam ngua gap bung
D6<-Giang %>% filter( Gioi_Tinh=="Nam") %>% select(6,7)
p6<-aov(D6$Gap_Bung~D6$Nhom)
summary(p6)
Df Sum Sq Mean Sq F value Pr(>F)
D6$Nhom 2 105.9 52.93 4.432 0.0128 *
Residuals 257 3068.7 11.94
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(p6)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = D6$Gap_Bung ~ D6$Nhom)
$`D6$Nhom`
diff lwr upr p adj
G2-G1 -1.6715686 -3.1805244 -0.1626128 0.0257656
G3-G1 -1.3315603 -2.5342448 -0.1288758 0.0258667
G3-G2 0.3400083 -0.9910545 1.6710712 0.8190514
plot(TukeyHSD(p6))

Nữ
Chay tuy suc 5phut
library(psych)
D1<-Giang %>% filter( Gioi_Tinh=="Nu") %>% select(1,7)
p1<-aov(D1$Chay_5~D1$Nhom)
summary(p1)
Df Sum Sq Mean Sq F value Pr(>F)
D1$Nhom 2 13277 6638 5.02 0.00735 **
Residuals 228 301499 1322
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(p1)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = D1$Chay_5 ~ D1$Nhom)
$`D1$Nhom`
diff lwr upr p adj
G2-G1 -23.15189 -40.533389 -5.770388 0.0053733
G3-G1 -11.69242 -25.222711 1.837873 0.1053763
G3-G2 11.45947 -3.752613 26.671551 0.1795726
plot(TukeyHSD(p1))

Bat xa tai cho
D2<-Giang %>% filter( Gioi_Tinh=="Nu") %>% select(2,7)
p2<-aov(D2$Bat_Xa~D2$Nhom)
summary(p2)
Df Sum Sq Mean Sq F value Pr(>F)
D2$Nhom 2 879 439.3 3.813 0.0235 *
Residuals 228 26269 115.2
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(p2)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = D2$Bat_Xa ~ D2$Nhom)
$`D2$Nhom`
diff lwr upr p adj
G2-G1 -5.0722496 -10.202836 0.05833717 0.0534239
G3-G1 -4.2378257 -8.231631 -0.24402001 0.0346157
G3-G2 0.8344238 -3.655805 5.32465229 0.8995424
plot(TukeyHSD(p2))

Luc bo tay
D3<-Giang %>% filter( Gioi_Tinh=="Nu") %>% select(3,7)
p3<-aov(D3$Luc_Bop~D3$Nhom)
summary(p3)
Df Sum Sq Mean Sq F value Pr(>F)
D3$Nhom 2 195 97.69 5.321 0.00551 **
Residuals 228 4186 18.36
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(p3)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = D3$Luc_Bop ~ D3$Nhom)
$`D3$Nhom`
diff lwr upr p adj
G2-G1 -2.6135468 -4.6615309 -0.5655627 0.0081309
G3-G1 -1.8126744 -3.4068879 -0.2184609 0.0213263
G3-G2 0.8008724 -0.9914989 2.5932437 0.5435942
plot(TukeyHSD(p3))

Chay 30m
D4<-Giang %>% filter( Gioi_Tinh=="Nu") %>% select(4,7)
p4<-aov(D4$Chay_30m~D4$Nhom)
summary(p4)
Df Sum Sq Mean Sq F value Pr(>F)
D4$Nhom 2 3.86 1.929 7.143 0.00098 ***
Residuals 228 61.56 0.270
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(p4)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = D4$Chay_30m ~ D4$Nhom)
$`D4$Nhom`
diff lwr upr p adj
G2-G1 0.23940066 -0.008971884 0.4877732 0.0615621
G3-G1 0.30886812 0.115527337 0.5022089 0.0006102
G3-G2 0.06946747 -0.147905224 0.2868402 0.7315641
plot(TukeyHSD(p4))

Chay con thoi
D5<-Giang %>% filter( Gioi_Tinh=="Nu") %>% select(5,7)
p5<-aov(D5$Con_Thoi~D5$Nhom)
summary(p5)
Df Sum Sq Mean Sq F value Pr(>F)
D5$Nhom 2 3.91 1.9571 7.817 0.000521 ***
Residuals 228 57.08 0.2504
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(p5)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = D5$Con_Thoi ~ D5$Nhom)
$`D5$Nhom`
diff lwr upr p adj
G2-G1 0.31250411 0.07333551 0.5516727 0.0064980
G3-G1 0.29578837 0.10961222 0.4819645 0.0006592
G3-G2 -0.01671574 -0.22603324 0.1926018 0.9806251
plot(TukeyHSD(p5))

Nam ngua gap bung
D6<-Giang %>% filter( Gioi_Tinh=="Nu") %>% select(6,7)
p6<-aov(D6$Gap_Bung~D6$Nhom)
summary(p6)
Df Sum Sq Mean Sq F value Pr(>F)
D6$Nhom 2 32.7 16.331 2.913 0.0563 .
Residuals 228 1278.2 5.606
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(p6)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = D6$Gap_Bung ~ D6$Nhom)
$`D6$Nhom`
diff lwr upr p adj
G2-G1 -1.0213465 -2.153070 0.11037680 0.0862705
G3-G1 -0.7865228 -1.667491 0.09444526 0.0908115
G3-G2 0.2348237 -0.755647 1.22529443 0.8417898
plot(TukeyHSD(p6))

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQotLS0NCnRpdGxlOiAiUiBOb3RlYm9vayINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMgWHUgbHkgZHUgbGlldSBQaEQgY2hvIE1yLiBHaWFuZw0KDQojIERvYyBkdSBsaWV1DQoNCg0KYGBge3J9DQojIEJhbmcgMy4yMg0KDQpHaWFuZzwtcmVhZC5jc3YoImh0dHBzOi8vcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbS90dXllbmhhdmFuL1N0YXRpc3RpY3MvbWFzdGVyL1MlRTElQkIlOTElMjBsaSVFMSVCQiU4N3UlMjB0aCVDMyVCNCUyMERhJTIwZ29wXzIyLmNzdiIsc2VwID0gIjsiLGhlYWRlcj1UKQ0KDQoNCmhlYWQoR2lhbmcpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KCJkcGx5ciIpDQoNCmxpYnJhcnkoInRpZHlyIikNCmBgYA0KDQpgYGB7cn0NCkQxPC1HaWFuZyAlPiUgZmlsdGVyKCBHaW9pX1Rpbmg9PSJOYW0iKSAlPiUgc2VsZWN0KDEsNykNCg0KYGBgDQoNCmBgYHtyfQ0KaGVhZChEMSkNCg0KbGlicmFyeShwc3ljaCkNCg0KZGVzY3JpYmUoRDEpDQpgYGANCg0KDQojQ2hheSB0dXkgc3VjIDVwaHV0DQoNCmBgYHtyfQ0KbGlicmFyeShwc3ljaCkNCg0KcDE8LWFvdihEMSRDaGF5XzV+RDEkTmhvbSkNCg0Kc3VtbWFyeShwMSkNCg0KVHVrZXlIU0QocDEpDQoNCnBsb3QoVHVrZXlIU0QocDEpKQ0KYGBgDQoNCg0KDQojIEJhdCB4YSB0YWkgY2hvDQoNCmBgYHtyfQ0KDQpEMjwtR2lhbmcgJT4lIGZpbHRlciggR2lvaV9UaW5oPT0iTmFtIikgJT4lIHNlbGVjdCgyLDcpDQoNCnAyPC1hb3YoRDIkQmF0X1hhfkQyJE5ob20pDQoNCnN1bW1hcnkocDIpDQoNClR1a2V5SFNEKHAyKQ0KDQpwbG90KFR1a2V5SFNEKHAyKSkNCg0KYGBgDQoNCiNMdWMgYm8gdGF5DQoNCmBgYHtyfQ0KDQpEMzwtR2lhbmcgJT4lIGZpbHRlciggR2lvaV9UaW5oPT0iTmFtIikgJT4lIHNlbGVjdCgzLDcpDQoNCnAzPC1hb3YoRDMkTHVjX0JvcH5EMyROaG9tKQ0KDQpzdW1tYXJ5KHAzKQ0KDQpUdWtleUhTRChwMykNCg0KcGxvdChUdWtleUhTRChwMykpDQpgYGANCiMgQ2hheSAzMG0NCg0KYGBge3J9DQoNCkQ0PC1HaWFuZyAlPiUgZmlsdGVyKCBHaW9pX1Rpbmg9PSJOYW0iKSAlPiUgc2VsZWN0KDQsNykNCg0KcDQ8LWFvdihENCRDaGF5XzMwbX5ENCROaG9tKQ0KDQpzdW1tYXJ5KHA0KQ0KDQpUdWtleUhTRChwNCkNCg0KcGxvdChUdWtleUhTRChwNCkpDQpgYGANCg0KIyBDaGF5IGNvbiB0aG9pDQoNCmBgYHtyfQ0KDQpENTwtR2lhbmcgJT4lIGZpbHRlciggR2lvaV9UaW5oPT0iTmFtIikgJT4lIHNlbGVjdCg1LDcpDQoNCnA1PC1hb3YoRDUkQ29uX1Rob2l+RDUkTmhvbSkNCg0Kc3VtbWFyeShwNSkNCg0KVHVrZXlIU0QocDUpDQoNCnBsb3QoVHVrZXlIU0QocDUpKQ0KYGBgDQoNCiMgTmFtIG5ndWEgZ2FwIGJ1bmcNCg0KYGBge3J9DQpENjwtR2lhbmcgJT4lIGZpbHRlciggR2lvaV9UaW5oPT0iTmFtIikgJT4lIHNlbGVjdCg2LDcpDQoNCnA2PC1hb3YoRDYkR2FwX0J1bmd+RDYkTmhvbSkNCg0Kc3VtbWFyeShwNikNCg0KVHVrZXlIU0QocDYpDQoNCnBsb3QoVHVrZXlIU0QocDYpKQ0KYGBgDQoNCiMgTuG7ryANCg0KI0NoYXkgdHV5IHN1YyA1cGh1dA0KDQpgYGB7cn0NCmxpYnJhcnkocHN5Y2gpDQpEMTwtR2lhbmcgJT4lIGZpbHRlciggR2lvaV9UaW5oPT0iTnUiKSAlPiUgc2VsZWN0KDEsNykNCg0KcDE8LWFvdihEMSRDaGF5XzV+RDEkTmhvbSkNCg0Kc3VtbWFyeShwMSkNCg0KVHVrZXlIU0QocDEpDQoNCnBsb3QoVHVrZXlIU0QocDEpKQ0KYGBgDQoNCg0KDQojIEJhdCB4YSB0YWkgY2hvDQoNCmBgYHtyfQ0KDQpEMjwtR2lhbmcgJT4lIGZpbHRlciggR2lvaV9UaW5oPT0iTnUiKSAlPiUgc2VsZWN0KDIsNykNCg0KcDI8LWFvdihEMiRCYXRfWGF+RDIkTmhvbSkNCg0Kc3VtbWFyeShwMikNCg0KVHVrZXlIU0QocDIpDQoNCnBsb3QoVHVrZXlIU0QocDIpKQ0KDQpgYGANCg0KI0x1YyBibyB0YXkNCg0KYGBge3J9DQoNCkQzPC1HaWFuZyAlPiUgZmlsdGVyKCBHaW9pX1Rpbmg9PSJOdSIpICU+JSBzZWxlY3QoMyw3KQ0KDQpwMzwtYW92KEQzJEx1Y19Cb3B+RDMkTmhvbSkNCg0Kc3VtbWFyeShwMykNCg0KVHVrZXlIU0QocDMpDQoNCnBsb3QoVHVrZXlIU0QocDMpKQ0KYGBgDQojIENoYXkgMzBtDQoNCmBgYHtyfQ0KDQpENDwtR2lhbmcgJT4lIGZpbHRlciggR2lvaV9UaW5oPT0iTnUiKSAlPiUgc2VsZWN0KDQsNykNCg0KcDQ8LWFvdihENCRDaGF5XzMwbX5ENCROaG9tKQ0KDQpzdW1tYXJ5KHA0KQ0KDQpUdWtleUhTRChwNCkNCg0KcGxvdChUdWtleUhTRChwNCkpDQpgYGANCg0KIyBDaGF5IGNvbiB0aG9pDQoNCmBgYHtyfQ0KDQpENTwtR2lhbmcgJT4lIGZpbHRlciggR2lvaV9UaW5oPT0iTnUiKSAlPiUgc2VsZWN0KDUsNykNCg0KcDU8LWFvdihENSRDb25fVGhvaX5ENSROaG9tKQ0KDQpzdW1tYXJ5KHA1KQ0KDQpUdWtleUhTRChwNSkNCg0KcGxvdChUdWtleUhTRChwNSkpDQpgYGANCg0KIyBOYW0gbmd1YSBnYXAgYnVuZw0KDQpgYGB7cn0NCkQ2PC1HaWFuZyAlPiUgZmlsdGVyKCBHaW9pX1Rpbmg9PSJOdSIpICU+JSBzZWxlY3QoNiw3KQ0KDQpwNjwtYW92KEQ2JEdhcF9CdW5nfkQ2JE5ob20pDQoNCnN1bW1hcnkocDYpDQoNClR1a2V5SFNEKHA2KQ0KDQpwbG90KFR1a2V5SFNEKHA2KSkNCmBgYA0K