6.9 question 7
library(forecast)
## Warning: package 'forecast' was built under R version 3.4.4
library(fma)
library(fpp)
## Loading required package: expsmooth
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 3.4.4
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: tseries
## Warning: package 'tseries' was built under R version 3.4.4
writing
## Jan Feb Mar Apr May Jun Jul
## 1968 562.674 599.000 668.516 597.798 579.889 668.233 499.232
## 1969 634.712 639.283 712.182 621.557 621.000 675.989 501.322
## 1970 646.783 658.442 712.906 687.714 723.916 707.183 629.000
## 1971 676.155 748.183 810.681 729.363 701.108 790.079 594.621
## 1972 747.636 773.392 813.788 766.713 728.875 749.197 680.954
## 1973 795.337 788.421 889.968 797.393 751.000 821.255 691.605
## 1974 843.038 847.000 941.952 804.309 840.307 871.528 656.330
## 1975 778.139 856.075 938.833 813.023 783.417 828.110 657.311
## 1976 895.217 856.075 893.268 875.000 835.088 934.595 832.500
## 1977 875.024 992.968 976.804 968.697 871.675 1006.852 832.037
## Aug Sep Oct Nov Dec
## 1968 215.187 555.813 586.935 546.136 571.111
## 1969 220.286 560.727 602.530 626.379 605.508
## 1970 237.530 613.296 730.444 734.925 651.812
## 1971 230.716 617.189 691.389 701.067 705.777
## 1972 241.424 680.234 708.326 694.238 772.071
## 1973 290.655 727.147 868.355 812.390 799.556
## 1974 370.508 742.000 847.152 731.675 898.527
## 1975 310.032 780.000 860.000 780.000 807.993
## 1976 300.000 791.443 900.000 781.729 880.000
## 1977 345.587 849.528 913.871 868.746 993.733
tsdata<- ts(writing ,frequency = 12)
hist(tsdata)#here, based on the histogram, it looks like normal distribution. Based on this, my guess is that I do not need to use box-cox transfomation. However, I'm still going to run twice to verify my guess.

Compare the result
combine=rbind(acc1,acc2,acc3,acc4)
combine
## ME RMSE MAE MPE MAPE MASE
## Training set 3.475443e+00 45.40980 34.81644 0.2482138 5.109330 0.7121799
## Training set 4.848273e-02 45.38429 34.79116 -0.2322143 5.117906 0.7116628
## Training set 3.537169e+00 46.69230 37.81126 0.3325985 6.197585 0.7734397
## Training set 3.768864e-13 46.55813 37.83434 -0.2183412 6.217677 0.7739118
## ACF1
## Training set -0.5447733
## Training set -0.5447738
## Training set -0.5434606
## Training set -0.5434606
#Comparing the models, model 2 has the lowest MAE and MASE value, model 2 is the best model
#the best model is using method "rwdrift", without using box-cox transformation
#it proves my guess eariler was right, I do not need to use box-cox transformation here
6.9 question 8
fancy
## Jan Feb Mar Apr May Jun Jul
## 1987 1664.81 2397.53 2840.71 3547.29 3752.96 3714.74 4349.61
## 1988 2499.81 5198.24 7225.14 4806.03 5900.88 4951.34 6179.12
## 1989 4717.02 5702.63 9957.58 5304.78 6492.43 6630.80 7349.62
## 1990 5921.10 5814.58 12421.25 6369.77 7609.12 7224.75 8121.22
## 1991 4826.64 6470.23 9638.77 8821.17 8722.37 10209.48 11276.55
## 1992 7615.03 9849.69 14558.40 11587.33 9332.56 13082.09 16732.78
## 1993 10243.24 11266.88 21826.84 17357.33 15997.79 18601.53 26155.15
## Aug Sep Oct Nov Dec
## 1987 3566.34 5021.82 6423.48 7600.60 19756.21
## 1988 4752.15 5496.43 5835.10 12600.08 28541.72
## 1989 8176.62 8573.17 9690.50 15151.84 34061.01
## 1990 7979.25 8093.06 8476.70 17914.66 30114.41
## 1991 12552.22 11637.39 13606.89 21822.11 45060.69
## 1992 19888.61 23933.38 25391.35 36024.80 80721.71
## 1993 28586.52 30505.41 30821.33 46634.38 104660.67
tsdata2<- ts(fancy ,frequency = 12)
hist(tsdata2)#from histrogram, it's hard to tell whether or not should I use box-cox here, so I will run twice to verify the result

Compare the result
combinef=rbind(acc1f,acc2f,acc3f,acc4f)
combinef
## ME RMSE MAE MPE MAPE MASE
## Training set 3.860377e+02 2129.968 1488.218 1.372862 12.42621 0.3362916
## Training set 3.637622e+00 2038.948 1470.163 -1.305388 12.72765 0.3322117
## Training set 7.362193e+02 6151.814 3137.640 11.255325 34.54275 0.7090103
## Training set -5.564859e-11 6107.602 3184.904 2.090983 35.99669 0.7196905
## ACF1
## Training set -0.3328497
## Training set -0.3327513
## Training set -0.2027257
## Training set -0.2027257
#by comparing MAE, MASE, model 2 has the lowest number which means model 2 is the best model
#the best model is using method of "rwdrift", and does not requried box- cox tranformation